Dusty star-forming galaxies at high redshift (1 < z < 3) represent the most intense star-forming regions in the universe. Key aspects to these processes are the gas heating and cooling mechanisms, and although it is well known that these galaxies are gas-rich, little is known about the gas excitation conditions. Only a few detailed radiative transfer studies have been carried out owing to a lack of multiple line detections per galaxy. Here we examine these processes in a sample of 24 strongly lensed star-forming galaxies identified by the Planck satellite (LPs) at z ∼ 1.1–3.5. We analyze 162 CO rotational transitions (ranging from J up = 1 to 12) and 37 atomic carbon fine-structure lines ([C i]) in order to characterize the physical conditions of the gas in the sample of LPs. We simultaneously fit the CO and [C i] lines and the dust continuum emission, using two different non-LTE, radiative transfer models. The first model represents a two-component gas density, while the second assumes a turbulence-driven lognormal gas density distribution. These LPs are among the most gas-rich, IR-luminous galaxies ever observed (μ L L IR ( 8 − 1000 μ m ) ∼ 10 13 − 14.6 L ⊙; 〈 μ L M ISM 〉 = (2.7 ± 1.2) × 1012 M ⊙, with μ L ∼ 10–30 the average lens magnification factor). Our results suggest that the turbulent interstellar medium present in the LPs can be well characterized by a high turbulent velocity dispersion ( 〈 ΔV turb 〉 ∼ 100 km s−1) and ratios of gas kinetic temperature to dust temperature 〈 T kin/T d 〉 ∼ 2.5, sustained on scales larger than a few kiloparsecs. We speculate that the average surface density of the molecular gas mass and IR luminosity, Σ M ISM ∼ 103–4 M ⊙ pc−2 and Σ L IR ∼ 1011–12 L ⊙ kpc−2, arise from both stellar mechanical feedback and a steady momentum injection from the accretion of intergalactic gas.
The Columbia -U. de Chile CO Survey of the Southern Milky Way is used for separating the CO(1-0) emission of the fourth Galactic quadrant within the solar circle into its dominant components, giant molecular clouds (GMCs). After the subtraction of an axisymmetric model of the CO background emission in the inner Southern Galaxy, 92 GMCs are identified, and for 87 of them the two-fold distance ambiguity is solved. Their total molecular mass is M(H 2 ) = 1.14 ± 0.05 × 10 8 M ⊙ accounting for around 40% of the molecular mass estimated from an axisymmetric analysis of the H 2 volume density in the Galactic disk (Bronfman et al. 1988b) M(H 2 ) disk = 3.03 × 10 8 M ⊙ . The large scale spiral structure in the Southern Galaxy, within the solar circle, is traced by the GMCs in our catalog; 3 spiral arm segments: the Centaurus, Norma, and 3-kpc expanding arm are analyzed. After fitting a logarithmic spiral arm model to the arms, tangent directions at 310 • , 330 • , and 338 • , respectively, are found, consistent with previous values from the literature. A complete CS(2-1) survey toward IRAS point-like sources with FIR colors characteristic of UC HII regions is used to estimate the massive star formation rate per unit H 2 mass (MSFR), and the massive star formation efficiency (ǫ) for GMCs. The average MSFR for GMCs is 0.41 ± 0.06 L ⊙ /M ⊙ , and for the most massive clouds in the Norma arm it is 0.58 ± 0.09 L ⊙ /M ⊙ . Massive star formation efficiencies of GMCs are on average 3% of their available molecular mass.
Context. NIKA2 is a dual-band millimetre continuum camera of 2 900 kinetic inductance detectors, operating at 150 and 260 GHz, installed at the IRAM 30-m telescope in Spain. Open to the scientific community since October 2017, NIKA2 will provide key observations for the next decade to address a wide range of open questions in astrophysics and cosmology. Aims. Our aim is to present the calibration method and the performance assessment of NIKA2 after one year of observation. Methods. We used a large data set acquired between January 2017 and February 2018 including observations of primary and secondary calibrators and faint sources that span the whole range of observing elevations and atmospheric conditions encountered by the IRAM 30-m telescope. This allowed us to test the stability of the performance parameters against time evolution and observing conditions. We describe a standard calibration method, referred to as the “Baseline” method, to translate raw data into flux density measurements. This includes the determination of the detector positions in the sky, the selection of the detectors, the measurement of the beam pattern, the estimation of the atmospheric opacity, the calibration of absolute flux density scale, the flat fielding, and the photometry. We assessed the robustness of the performance results using the Baseline method against systematic effects by comparing results using alternative methods. Results. We report an instantaneous field of view of 6.5′ in diameter, filled with an average fraction of 84%, and 90% of valid detectors at 150 and 260 GHz, respectively. The beam pattern is characterised by a FWHM of 17.6″ ± 0.1″ and 11.1″ ± 0.2″, and a main-beam efficiency of 47%±3%, and 64%±3% at 150 and 260 GHz, respectively. The point-source rms calibration uncertainties are about 3% at 150 GHz and 6% at 260 GHz. This demonstrates the accuracy of the methods that we deployed to correct for atmospheric attenuation. The absolute calibration uncertainties are of 5%, and the systematic calibration uncertainties evaluated at the IRAM 30-m reference Winter observing conditions are below 1% in both channels. The noise equivalent flux density at 150 and 260 GHz are of 9 ± 1 mJy s1/2 and 30 ± 3 mJy s1/2. This state-of-the-art performance confers NIKA2 with mapping speeds of 1388 ± 174 and 111 ± 11 arcmin2 mJy−2 h−1 at 150 and 260 GHz. Conclusions. With these unique capabilities of fast dual-band mapping at high (better that 18″) angular resolution, NIKA2 is providing an unprecedented view of the millimetre Universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.