Ras (p21ras) interacts directly with the catalytic subunit of phosphatidylinositol-3-OH kinase in a GTP-dependent manner through the Ras effector site. In vivo, dominant negative Ras mutant N17 inhibits growth factor induced production of 3' phosphorylated phosphoinositides in PC12 cells, and transfection of Ras, but not Raf, into COS cells results in a large elevation in the level of these lipids. Therefore Ras can probably regulate phosphatidylinositol-3-OH kinase, providing a point of divergence in signalling pathways downstream of Ras.
The pathways by which mammalian Ras proteins induce cortical actin rearrangement and cause cellular transformation are investigated using partial loss of function mutants of Ras and activated and inhibitory forms of various postulated target enzymes for Ras. Efficient transformation by Ras requires activation of other direct effectors in addition to the MAP kinase kinase kinase Raf and is inhibited by inactivation of the PI 3-kinase pathway. Actin rearrangement correlates with the ability of Ras mutants to activate PI 3-kinase. Inhibition of PI 3-kinase activity blocks Ras induction of membrane ruffling, while activated PI 3-kinase is sufficient to induce membrane ruffling, acting through Rac. The ability of activated Ras to stimulate PI 3-kinase in addition to Raf is therefore important in Ras transformation of mammalian cells and essential in Ras-induced cytoskeletal reorganization.
The viability of vertebrate cells depends on survival factors which activate signal transduction pathways that suppress apoptosis. Defects in anti-apoptotic signalling pathways are implicated in many pathologies including cancer, in which apoptosis induced by deregulated oncogenes must be forestalled for a tumour to become established. Phosphatidylinositol-3-kinase (PI(3)K) is involved in the intracellular signal transduction of many receptors and has been implicated in the transduction of survival signals in neuronal cells. We therefore examined the role of PI(3)K, its upstream effector Ras, and its putative downstream protein kinase effectors PKB/Akt and p70S6K (ref. 5) in the modulation of apoptosis induced in fibroblasts by the oncoprotein c-Myc. Here we show that Ras activation of PI(3)K suppresses c-Myc-induced apoptosis through the activation of PKB/Akt but not p70S6K. However, we also found that Ras is an effective promoter of apoptosis, through the Raf pathway. Thus Ras activates contradictory intracellular pathways that modulate cell viability. Induction of apoptosis by Ras may be an important factor in limiting the expansion of somatic cells that sustain oncogenic ras mutations.
Cardio-facio-cutaneous (CFC) syndrome is a sporadic developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, and developmental delay. We demonstrate that heterogeneous de novo missense mutations in three genes within the mitogen-activated protein kinase (MAPK) pathway cause CFC syndrome. The majority of cases (18 out of 23) are caused by mutations in BRAF, a gene frequently mutated in cancer. Of the 11 mutations identified, two result in amino acid substitutions that occur in tumors, but most are unique and suggest previously unknown mechanisms of B-Raf activation. Furthermore, three of five individuals without BRAF mutations had missense mutations in either MEK1 or MEK2, downstream effectors of B-Raf. Our findings highlight the involvement of the MAPK pathway in human development and will provide a molecular diagnosis of CFC syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.