In this work, we utilise a combination of theory, computation and experiments to understand the early events related to the nucleation of Ag filaments on α-Ag2WO4 crystals, which is driven by an accelerated electron beam from an electron microscope under high vacuum. The growth process and the chemical composition and elemental distribution in these filaments were analysed in depth at the nanoscale level using TEM, HAADF, EDS and XPS; the structural and electronic aspects were systematically studied in using first-principles electronic structure theory within QTAIM framework. The Ag nucleation and formation on α-Ag2WO4 is a result of the order/disorder effects generated in the crystal by the electron-beam irradiation. Both experimental and theoretical results show that this behavior is associated with structural and electronic changes of the [AgO2] and [AgO4] clusters and, to a minor extent, to the [WO6] cluster; these clusters collectively represent the constituent building blocks of α-Ag2WO4.
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Metastable silver tungstate (β-Ag2WO4) has attracted much attention lately because of its many potential applications. However, the synthesis of metastable phases of inorganic compounds is challenging because of the ease of transformation to the stable phase. We have overcome this challenge and have successfully synthesized β-Ag2WO4 microcrystals using a dropwise precipitation (DP) method in aqueous media at low temperature. The microcrystals were characterized by X-ray diffraction (XRD), including powder X-ray diffraction structural determination, field-emission scanning electron microscopy (FE-SEM), and micro-Raman/ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. To complement the experimental data, we present first-principles quantum-mechanical density functional theory (DFT) calculations. Using XRD data, Raman/UV-vis data, and the determined optical band gap, together with geometric optimization calculations, we confirmed the structure of this compound. β-Ag2WO4 has a hexagonal structure with a P63/m space group. The building blocks of the lattice comprise two types of W-O clusters, [WO4] and [WO5], coordinated to four and five O atoms, respectively, and two types of Ag-O clusters, [AgO6], and [AgO5], linked to six and five O atoms, respectively. This type of fundamental study, combining multiple experimental methods and first-principles calculations, helps to obtain a basic understanding of the local structure and bonding in the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.