Aspect-Oriented technologies, including Aspect-Oriented Modelling, provide a set of new constructs (e.g., advices or pointcuts), that help to improve the modularisation of crosscutting concerns. However, these new constructions can make it more difficult to understand how a system works as a whole, once all design modules are composed together, because: (1) designers may not be familiar with the new aspect-oriented constructions; and/or (2) aspect-orientation may cause new problems, such as the handling of aspect interactions. A straightforward and simple solution to check how a system works is to execute it. UML and its Action Semantics provide the foundations for modelling and executing object-oriented software systems. This paper presents a UML 2.0 Profile which extends the UML and its Action Semantics for the construction of aspect-oriented executable models and also a model weaver which makes the execution of such models possible. Our approach is illustrated using an Online Book Store system taken from the literature.
Abstr act. Managing variability is a challenging issue in software-product-line engineering. A key part of variability management is the ability to express explicitly the relationship between variability models (expressing the variability in the problem space, for example using feature models) and other artefacts of the product line, for example, requirements models and architecture models. Once these relations have been made explicit, they can be used for a number of purposes, most importantly for product derivation, but also for the generation of trace links or for checking the consistency of a product-line architecture. This paper bootstraps techniques from product-line engineering to produce a family of languages for variability management for easing the creation of new members of the family of languages. We show that developing such language families is feasible and demonstrate the flexibility of our language family by applying it to the development of two variability-management languages.
Pseudoxanthoma elasticum (PXE) is an inherited disorder characterized by calcification of elastic fibres leading to dermatological and vascular alterations associated to premature aged features and to life threatening clinical manifestations. The severity of the disease is independent from the type of mutation in the ABCC6 gene, and it has been suggested that local and/or systemic factors may contribute to the occurrence of clinical phenotype. The redox balance in the circulation of 27 PXE patients and of 50 healthy subjects of comparable age was evaluated by measuring the advanced oxidation protein products (AOPP), the lipid peroxidation derivatives (LOOH), the circulating total antioxidant status (TAS), the thiol content and the extracellular superoxide dismutase activity (EC-SOD). Patients were diagnosed by clinical, ultrastructural and molecular findings. Compared to control subjects, PXE patients exhibited significantly lower antioxidant potential, namely circulating TAS and free thiol groups, and higher levels of parameters of oxidative damage, as LOOH and of AOPP, and of circulating EC-SOD activity. Interestingly, the ratio between oxidant and antioxidant parameters was significantly altered in PXE patients and related to various score indices. This study demonstrates, for the first time, that several parameters of oxidative stress are modified in the blood of PXE patients and that the redox balance is significantly altered compared to control subjects of comparable age. Therefore, in PXE patients the circulating impaired redox balance may contribute to the occurrence of several clinical manifestations in PXE patients, and/or to the severity of disease, thus opening new perspectives for their management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.