SQSTM1 (also known as p62) is a multifunctional stress-inducible scaffold protein involved in diverse cellular processes. Its functions are tightly regulated through an extensive pattern of post-translational modifications, and include the isolation of cargos degraded by autophagy, induction of the antioxidant response by the Keap1-Nrf2 system, as well as the regulation of endosomal trafficking, apoptosis and inflammation. Accordingly, malfunction of SQSTM1 is associated with a wide range of diseases, including bone and muscle disorders, neurodegenerative and metabolic diseases, and multiple forms of cancer. In this Review, we summarize current knowledge regarding regulation, post-translational modifications and functions of SQSTM1, as well as how they are dysregulated in various pathogenic contexts.
p62 is a stress‐inducible protein able to change among binding partners, cellular localizations and form liquid droplet structures in a context‐dependent manner. This protein is mainly defined as a cargo receptor for selective autophagy, a process that allows the degradation of detrimental and unnecessary components through the lysosome. Besides this role, its ability to interact with multiple binding partners allows p62 to act as a main regulator of the activation of the Nrf2, mTORC1, and NF‐κB signaling pathways, linking p62 to the oxidative defense system, nutrient sensing, and inflammation, respectively. In the present review, we will present the molecular mechanisms behind the control p62 exerts over these pathways, their interconnection and how their deregulation contributes to cancer progression.
p62/SQSTM1 is a multivalent protein that has the ability to cause liquid–liquid phase separation and serves as a receptor protein that participates in cargo isolation during selective autophagy. This protein is also involved in the non‐canonical activation of the Keap1‐Nrf2 system, a major oxidative stress response pathway. Here, we show a role of neighbor of BRCA1 gene 1 (NBR1), an autophagy receptor structurally similar to p62/SQSTM1, in p62‐liquid droplet formation and Keap1‐Nrf2 pathway activation. Overexpression of NBR1 blocks selective degradation of p62/SQSTM1 through autophagy and promotes the accumulation and phosphorylation of p62/SQSTM1 in liquid‐like bodies, which is required for the activation of Nrf2. NBR1 is induced in response to oxidative stress, which triggers p62‐mediated Nrf2 activation. Conversely, loss of Nbr1 suppresses not only the formation of p62/SQSTM1‐liquid droplets, but also of p62‐dependent Nrf2 activation during oxidative stress. Taken together, our results show that NBR1 mediates p62/SQSTM1‐liquid droplet formation to activate the Keap1‐Nrf2 pathway.
10 p62/SQSTM1 is a multivalent protein that has an ability to cause a liquid-liquid phase separation and serves as a receptor protein that participates in cargo isolation during selective autophagy. This protein is also involved in the non-canonical activation of the Keap1-Nrf2 system, a major oxidative stress response pathway. Here we show a role of Neighbor of BRCA1 gene 1 (NBR1), an autophagy receptor structurally similar to 15 p62/SQSTM1, in the p62-liquid droplet formation and the Keap1-Nrf2 pathway. The overexpression of NBR1 blocked selective degradation of p62/SQSTM1 through autophagy and promoted the accumulation and phosphorylation of p62/SQSTM1 in liquid-like bodies, which is required for the activation of Nrf2. NBR1 was induced in response to oxidative stress, and then the p62-mediated Nrf2 activation was up-regulated. 20 Conversely, loss of Nbr1 suppresses not only the formation of p62/SQSTM1-liquid droplets but also p62-dependent Nrf2 activation during oxidative stress. Taken together, our results show that NBR1 mediates p62/SQSTM1-liquid droplet formation to activate the Keap1-Nrf2 pathway.25
Autophagy mediates the degradation of cytoplasmic material. Upon autophagy induction, autophagosomes form a sealed membrane around the cargo and fuse with the lytic compartment to release the cargo for degradation. In order to avoid premature fusion of immature autophagosomal membranes with the lytic compartment, this process needs to be tightly regulated. Several factors mediating autophagosome-vacuole fusion have recently been identified. In budding yeast, autophagosome-vacuole fusion requires the R-SNARE Ykt6 on the autophagosome, together with the three Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. However, how these SNAREs are regulated during the fusion process is poorly understood. In this study, we investigate the regulation of Ykt6. We found that Ykt6 is directly phosphorylated by Atg1 kinase, which keeps this SNARE in an inactive state. Ykt6 phosphorylation prevents SNARE bundling by disrupting its interaction with the vacuolar SNAREs Vam3 and Vti1, thereby preventing premature autophagosome-vacuole fusion. These findings shed new light on the regulation of autophagosome-vacuole fusion and reveal a further step in autophagy controlled by the Atg1 kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.