Deep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.
In December 2019, a new coronavirus known as 2019-nCoV emerged in Wuhan, China. The virus has spread globally and the infection was declared pandemic in March 2020. Although most cases of coronavirus disease 2019 (COVID-19) are mild, some of them rapidly develop acute respiratory distress syndrome. In the clinical management, chest X-rays (CXR) are essential, but the evaluation of COVID-19 CXR could be a challenge. In this context, we developed COVID-19 TRAINING , a free Web application for training on the evaluation of COVID-19 CXR. The application included 196 CXR belonging to three categories: non-pathological , pathological compatible with COVID-19 , and pathological non-compatible with COVID-19 . On the training screen, images were shown to the users and they chose a diagnosis among those three possibilities. At any time, users could finish the training session and be evaluated through the estimation of their diagnostic accuracy values: sensitivity, specificity, predictive values, and global accuracy. Images were hand-labeled by four thoracic radiologists. Average values for sensitivity, specificity, and global accuracy were .72, .64, and .68. Users who achieved better sensitivity registered less specificity ( p < .0001) and those with higher specificity decreased their sensitivity ( p < .0001). Users who sent more answers achieved better accuracy ( p = .0002). The application COVID-19 TRAINING provides a revolutionary tool to learn the necessary skills to evaluate COVID-19 on CXR. Diagnosis training applications could provide a new original manner of evaluation for medical professionals based on their diagnostic accuracy values, and an efficient method to collect valuable data for research purposes.
Background and Purpose Intracranial hemorrhage (ICH) is a common life‐threatening condition that must be rapidly diagnosed and treated. However, there is still a lack of consensus regarding treatment, driven to some extent by prognostic uncertainty. While several prediction models for ICH detection have already been published, here we present a deep learning predictive model for ICH prognosis. Methods We included patients with ICH (n = 262), and we trained a custom model for the classification of patients into poor prognosis and good prognosis, using a hybrid input consisting of brain CT images and other clinical variables. We compared it with two other models, one trained with images only (I‐model) and the other with tabular data only (D‐model). Results Our hybrid model achieved an area under the receiver operating characteristic curve (AUC) of .924 (95% confidence interval [CI]: .831‐.986), and an accuracy of .861 (95% CI: .760‐.960). The I‐ and D‐models achieved an AUC of .763 (95% CI: .622‐.902) and .746 (95% CI: .598‐.876), respectively. Conclusions The proposed hybrid model was able to accurately classify patients into good and poor prognosis. To the best of our knowledge, this is the first ICH prognosis prediction deep learning model. We concluded that deep learning can be applied for prognosis prediction in ICH that could have a great impact on clinical decision‐making. Further, hybrid inputs could be a promising technique for deep learning in medical imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.