A conventional approach to solving stochastic optimal control problems with time-dependent uncertainties involves the use of the stochastic maximum principle (SMP) technique. For large-scale problems, however, such an algorithm frequently leads to convergence complexities when solving the two-point boundary value problem resulting from the optimality conditions. An alternative approach consists of using continuous random variables to capture uncertainty through sampling-based methods embedded within an optimization strategy for the decision variables; such a technique may also fail due to the computational intensity involved in excessive model calculations for evaluating the objective function and its derivatives for each sample. This paper presents a new approach to solving stochastic optimal control problems with time-dependent uncertainties based on BONUS (Better Optimization algorithm for Nonlinear Uncertain Systems). The BONUS has been used successfully for non-linear programming problems with static uncertainties, but we show here that its scope can be extended to the case of optimal control problems with time-dependent uncertainties. A batch reactor for biodiesel production was used as a case study to illustrate the proposed approach. Results for a maximum profit problem indicate that the optimal objective function and the optimal profiles were better than those obtained by the maximum principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.