Thirty-seven actinomycetes strains were isolated from soil samples collected from an agriculture field in Vengodu, Thiruvannamalai District, Tamil Nadu, India (latitude: 12° 54' 0033″, North; longitude: 79° 78' 5216″, East; elevation: 228.6/70.0 ft/m). The isolates were assessed for antagonistic activity against five Gram-positive bacteria, seven Gram-negative bacteria, and two pathogenic fungi. During the initial screening, 43% of the strains showed weak activity, 16% showed moderate activity, 5% showed good activity, and 35% showed no antagonistic activity. Among the strains tested, SCA 7 showed strong antimicrobial activity. Maximum biological activity was obtained on modified nutrient glucose agar (MNGA) medium. The mycelia of SCA 7 were extracted with methanol and tested against microbial pathogens using the disc diffusion method. The crude extract was purified partially using column chromatography and assessed for antimicrobial activity. Fraction 10 showed good activity against Staphylococcus epidermidis (31.25 μg/mL) and Malassezia pachydermatis (500 μg/mL) and the active principle (fraction 10) was identified as 2,4-bis (1,1-dimethylethyl) phenol. Based on morphological, physiological, biochemical, cultural, and molecular characteristics (16S rDNA sequencing), this strain was identified as Streptomyces sp. SCA 7. It could be used in the development of new substances for pharmaceutical or agricultural purposes.
BackgroundActinomycetes are Gram-positive, often filamentous, bacteria known for their unsurpassed capacity for the production of secondary metabolites with diverse biological activities. The aim of the present study was to evaluate the antimicrobial, cytotoxic and antioxidant properties of Streptomyces lavendulae strain SCA5.ResultsThe ethyl acetate extract of SCA5 broth (EA-SCA5) showed antimicrobial activity with MIC value of 31.25 μg/ml. EA-SCA5 showed good antioxidant potential by scavenging 2, 2-diphenyl-picrylhydrazyl (DPPH) (IC50 507.61 ± 0.66 μg/ml), hydroxyl radical (IC50 617.84 ± 0.57 μg/ml), nitric oxide (IC50 730.92 ± 0.81 μg/ml) and superoxide anion radical (IC50 864.71 ± 1.15 μg/ml). The EA-SCA5 also showed strong suppressive effect on rat liver lipid peroxidation (IC50 838.83 ± 1.18 μg/ml). The total phenolic content of SCA5 was 577.12 mg of GAE equivalents/gram extract. EA-SCA5 exhibited cytotoxic activity on A549 adenocarcinoma lung cancer cell line. It showed 84.9% activity at 500 μg/ml with IC50 value of 200 μg/ml. The gas chromatography mass spectrometry (GC-MS) analysis revealed the presence of one major bioactive compound actinomycin C2.ConclusionsThe results of this study indicate that the EA-SCA5 could be probed further for isolating some medically useful compounds.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-014-0291-6) contains supplementary material, which is available to authorized users.
The present study showed that among the isolated actinomycetes, Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) showed good antibacterial activity against the tested bacteria.
Tunicamycin E (1), featuring a methyl substitution at C-10', was isolated from marine-derived Streptomyces xinghaiensis SCSIO S15077 originated from the South China Sea sediment together with six known compounds, tunicamycin B (2), tunicamycin X (3), tunicamycin A (4), streptovirudin D2 (5), tunicamycin C (6), and tunicamycin C3 (7). The structure of compound 1 was elucidated by detailed spectroscopic data analyses. All the compounds exhibited strong to moderate antibacterial activity against Gram-positive bacteria Bacillus thuringiensis BT01 and B. thuringiensis W102 with MIC values ranging from 0.008 to 2 μg/mL. Moreover, compounds 1-7 exhibited moderate antifungal activity against Candida albicans ATCC 96901 and C. albicans CMCC (F) 98001 with MIC values ranging from 2 to 32 μg/mL. This is the first report that tunicamycins exhibit antimicrobial activities against B. thuringiensis, C. albicans CMCC (F) 98001 and a fluconazole resistant strain C. albicans ATCC 96901.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.