This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production.
Our study aimed at assessing the effects of 3 Plants Growth Promoting Rhizobacteria (PGPR) either singly or in combination on maize growth under laboratory and greenhouse conditions. Seeds were inoculated with single and combined solution of 108 CFU/ml of Rhizobacteria. Seeds were not inoculated for the control variant. The highest germination percentage was obtained with the combination of Pseudomonas fluorescens and Pseudomonas putida. This combination also recorded the best vigor index, plants circumferences number of leaves and the leaf area. The maximal heights of plants were observed with seeds treated with Azospirillum lipoferum with an increase of 37.32%. The highest rates of underground dry matter were recorded with A. lipoferum, with an increase of more than 56% comparative to control, while the combination P. fluorescens and P. putida increased the aerial dry matter of 59.11%. Finally, the highest value of the aerial biomass was obtained with the plants treated with the combination of P. fluorescens and P. putida and the highest underground biomass was obtained with plants treated only with A. lipoferum. These results s...
Our study aims to characterize Plant Growth Promoting Rhizobacteria (PGPR) isolated from maize roots in five agroecological zones of central and northern Benin. Sixty samples were collected at the rate of four samples per village and three villages per agroecological zone. Rhizobacteria strains were isolated from these samples and biochemically characterized. These strains were analyzed for some of their PGPR traits like ammonia production and hydrogen cyanide following conventional methods. Microbiological investigation of these samples has shown that maize rhizospheres in central and northern Benin contain a high diversity of microorganisms. A total of nine species of maize Plant Growth Promoting Rhizobacteria were identified. Those PGPR include five Bacillus species (B. polymyxa, B. pantothenticus, B. anthracis, B. thuringiensis, and B. circulans), three Pseudomonas species (P. cichorii, P. putida, and P. syringae), and Serratia marcescens. The microbial diversity does not depend on the soil types. The microbial density, generally high, varies according to both soil types and agroecological zones. All Serratia strains (100%) have produced ammonia, whereas 80% of Bacillus and 77.77% of Pseudomonas produced this metabolite. The hydrogen cyanide was produced by all isolates (100%) independent of their genus. These results suggest the possibility to use these rhizobacteria as biological fertilizers to increase maize production.
Kola nuts were regularly chewed by West Africans and Beninese in particularly. The aim of this study was to investigate nutritional and anti-nutrient content of three Benin's kola nuts (Cola nitida, Cola acuminata and Garcinia kola). Proximate composition of the three species of kola nuts was assessed using standard analytical AOAC methods. Phenolics and flavonoids contents were determined by Folin-Ciocalteu and aluminum trichloride methods, respectively. Mineral composition was determined by Atomic Absorption Spectrometry method. Free and total amino acids were separated and quantified by HPLC. Protein content of the three kola nuts ranges from 4.95% (G. kola) to 10.64% (C. acuminata) whereas fat content ranges from 0.2 ± 0.00 (C. nitida) to 2.5 ± 0.42 (G. kola). Total phenolics abounded (2444.96 ± 81.56 µg Eq AG/100g) in C. acuminata, while flavonoids predominated (561.69 ± 22.10 µgEqQ/100g) in G. kola. The three species are a good source of magnesium and a copper provider was lowest in C. nitida (0.59 ± 0.08 mg/g) and in C. acuminata (0.65 ± 0.02 mg/g). The dominant total essential amino acids were threonine (C. acu-* Corresponding author. D. Dah-Nouvlessounon et al.1396 minata) and methionine (C. acuminata and G. kola), while the predominant non-essential total amino acids according to species were arginine (C. nitida and G. kola), proline (C. acuminata) and cysteine (G. kola). For the anti-nutrients factors, saponins were in great proportion (8.33% ± 0.25%), while the oxalates were in small proportion (0.44% ± 0.04%). The three species have an interesting nutritional composition, but these seeds have the relatively lowest amino acids content.
The aim of the study was to investigate the effects of five plant growth-promoting rhizobacteria (PGPR) (Bacillus panthothenicus; Pseudomonas Cichorii; Pseudomonas Putida; Pseudomonas syringae and Serratia marcescens) on the growth and yield of maize on a ferruginous soil under field condition. Maize seeds were inoculated with 10 ml of bacterial suspension. Study was conducted in a completely randomized design with fifteen treatments and three replicates. A half-dose of recommended (13, 17, 17 kg•ha −1) NPK was applied 15 days after emergence. The results show that the Serratia marcescens + 50% NPK treatment yielded the best results for height, fresh underground biomass, dry aboveground biomass, dry underground biomass, and grain yield with respective increases of 41.09%, 217.5%, 213.34%, 93.82%, and 39.05% compared to the control. Maximum stem diameter (increases of 49.65%) was recorded in the plants treated with 100% NPK (full dose NPK) while the highest leaf area (466.36 ± 9.57 cm 2), obtained on plant treated with Pseudomonas putida + 50% NPK was 32.08% greater than in the non-inoculated control. Our results suggest the use of these rhizobacteria as biological fertilizers for enhancing the growth and maize seed yield in ferruginous soil in the North of Benin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.