Summary Hemogenic endothelium (HE) has been recognized as a source of hematopoietic stem cells (HSCs) in the embryo. Access to human HE progenitors (HEPs) is essential to enable the investigation of the molecular determinants of HSC specification. Here we show that HEPs capable of generating definitive hematopoietic cells can be obtained from human pluripotent stem cells (hPSCs) and identified precisely by VE-cadherin+CD73−CD235a/CD43− phenotype. This phenotype discriminates true HEPs from VE-cadherin+CD73+ non-HEPs, and VE-cadherin+CD235a+CD41a− early hematopoietic cells with endothelial and FGF2-dependent hematopoietic colony-forming potential. We found that HEPs arise at the post primitive streak stage of differentiation directly from VE-cadherin-negative KDRbrightAPLNR+PDGFRαlow/− hematovascular mesodermal precursors (HVMPs). In contrast, hemangioblasts, which are capable of forming endothelium and primitive blood cells, originate from more immature APLNR+PDGFRα+ mesoderm. The demarcation of HEPs and HVMPs provides a platform for modeling blood development from endothelium with a goal to facilitate generation of HSCs from hPSCs.
Every year more than 500,000 deaths are attributed to trauma worldwide and severe hemorrhage is present in most of them. Transfused platelets have been shown to improve survival in trauma patients, although its mechanism is only partially known. Platelet derived-extracellular vesicles (PEVs) are small vesicles released from platelets upon activation and/or mechanical stimulation and many of the benefits attributed to platelets could be mediated through PEVs. Based on the available literature, we hypothesized that transfusion of human PEVs would promote hemostasis, reduce blood loss and attenuate the progression to hemorrhagic shock following severe trauma. In this study, platelet units from four different donors were centrifuged to separate platelets and PEVs. The pellets were washed to obtain plasma-free platelets to use in the rodent model. The supernatant was subjected to tangential flow filtration for isolation and purification of PEVs. PEVs were assessed by total count and particle size distribution by Nanoparticle Tracking Analysis (NTA) and characterized for cells of origin and expression of EV specific-surface and cytosolic markers by flow cytometry. The coagulation profile from PEVs was assessed by calibrated automated thrombography (CAT) and thromboelastography (TEG). A rat model of uncontrolled hemorrhage was used to compare the therapeutic effects of 8.7 × 108 fresh platelets (FPLT group, n = 8), 7.8 × 109 PEVs (PEV group, n = 8) or Vehicle (Control, n = 16) following severe trauma. The obtained pool of PEVs from 4 donors had a mean size of 101 ± 47 nm and expressed the platelet-specific surface marker CD41 and the EV specific markers CD9, CD61, CD63, CD81 and HSP90. All PEV isolates demonstrated a dose-dependent increase in the rate and amount of thrombin generated and overall clot strength. In vivo experiments demonstrated a 24% reduction in abdominal blood loss following liver trauma in the PEVs group when compared with the control group (9.9 ± 0.4 vs. 7.5 ± 0.5 mL, p < 0.001>). The PEV group also exhibited improved outcomes in blood pressure, lactate level, base excess and plasma protein concentration compared to the Control group. Fresh platelets failed to improve these endpoints when compared to Controls. Altogether, these results indicate that human PEVs provide pro-hemostatic support following uncontrolled bleeding. As an additional therapeutic effect, PEVs improve the outcome following severe trauma by maintaining hemodynamic stability and attenuating the development of ischemia, base deficit, and cardiovascular shock.
Progressive pseudorheumatoid dysplasia (PPD) is a progressive skeletal syndrome characterized by stiffness, swelling and pain in multiple joints with associated osteoporosis in affected patients. Radiographically, the predominant features resemble a spondyloepiphyseal dysplasia. Mutations in the WISP3 gene are known to cause this autosomal recessive condition. To date, only a limited number of studies have looked into the spectrum of mutations causing PPD. We report on clinical features and WISP3 mutations in a large series of Indian patients with this rare skeletal dysplasia. Families with at least one member showing clinical and radiologic features of PPD were recruited for the study. Symptoms, signs and radiographic findings were documented in 35 patients from 25 unrelated families. Swelling of small joints of hands and contractures are the most common presenting features. Mutation analysis was carried out by bidirectional sequencing of the WISP3 gene in all 35 patients. We summarize the clinical features of 35 patients with PPD and report on 11 different homozygous mutations and one instance of compound heterozygosity. Eight (c.233G>A, c.340T>C, c.348C>A, c.433T>C, c.682T>C, c.802T>G, c.947_951delAATTT, and c.1010G>A) are novel mutations and three (c.156C>A, c.248G>A, and c.739_740delTG) have been reported previously. One missense mutation (c.1010G>A; p.Cys337Tyr) appears to be the most common in our population being seen in 10 unrelated families. This is the largest cohort of patients with PPD in the literature and the first report from India on mutation analysis of WISP3. We also review all the mutations reported in WISP3 till date.
AUTHORSHIP B.M. performed the planning and execution of all assays as well as writing and editing of the article. A.T. performed the planning, execution, and analysis of in vitro and in vivo experiments and article development. P.P.T. performed the flow cytometry. D.P. performed the data analysis and planning of experiments. G.B. performed the development of in vivo assays. L.V. and M.L. performed the in vitro assays and article development. A.K.S. and E.L. performed the Plt-EV characterization. R.C., L.Z.K., and A.T.F. performed the Plt aggregometry studies and article development. M.A.S., J.B.H., C.E.W.,and S.P. performed the development and planning ofstudies, data analysis, and article development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.