The proline-rich homeodomain protein (PRH/Hex) is important in the control of cell proliferation and differentiation and in the regulation of multiple processes in embryonic development. We have shown previously that PRH contains two domains that can independently bring about transcriptional repression. The PRH homeodomain represses transcription by binding to TATA box sequences, whereas the proline-rich N-terminal domain of PRH can repress transcription when attached to a heterologous DNA-binding domain. The Groucho/ transducin-like enhancer of split (TLE) family of proteins are transcriptional co-repressors that interact with a number of DNA-bound transcription factors and play multiple roles in development. Here we demonstrate that the proline-rich N-terminal domain of PRH binds to TLE1 in vitro and in yeast two-hybrid assays. We show that PRH and TLE proteins are co-expressed in hematopoietic cells and interact in co-immunoprecipitation assays. We demonstrate that TLE1 increases repression by PRH in transient transfection assays and that titration of endogenous TLE proteins by co-expression of Grg5, a natural trans-dominant negative protein, alleviates transcriptional repression by PRH. Finally, we show that a mutation in the PRH N-terminal domain that blocks the PRH-TLE1 interaction in vitro eliminates co-repression. We discuss these results in terms of the roles of PRH and TLE in cell differentiation and development.
The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNA-binding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein.
PRH (proline-rich homeodomain protein) is strongly expressed in the hematopoietic compartment. Here we show that PRH is a repressor of transcription in hematopoietic cells. A fragment of PRH that includes the homeodomain can bind to TATA box sequences in vitro and can also bind to the TATA box-binding protein. PRH represses transcription from TATA box-containing promoters in intact cells but does not repress transcription from a promoter lacking a TATA box. A mutation in the PRH homeodomain that blocks binding to DNA but that has little or no effect on binding to the TATA box-binding protein significantly reduces the ability of the protein to repress transcription and provides the first clear demonstration that a homeodomain can bring about transcriptional repression in vivo by binding to a TATA box. However, we also show that mutation of the PRH homeodomain does not block the ability of PRH to repress transcription when this protein is tethered upstream of the TATA box via a heterologous DNA-binding domain. PRH also contains an N-terminal proline-rich repression domain that is separate from the homeodomain. Deletion mapping suggests that this repression domain contains at least two regions that both independently contribute to transcriptional repression.
The proline-rich homeodomain protein (PRH) plays multiple roles in the control of gene expression during embryonic development and in the adult. Vascular endothelial growth factor (VEGF) is a mitogen that stimulates cell proliferation and survival via cell surface receptors including VEGFR-1 and VEGFR-2. VEGF signaling is of critical importance in angiogenesis and hematopoiesis and is elevated in many tumors. Here we show that PRH binds directly to the promoter regions of the Vegf, Vegfr-1, and Vegfr-2 genes and that in each case PRH represses transcription. We demonstrate that overexpression or knockdown of PRH directly impinges on the survival of both leukemic and tumor cells and that the modulation of VEGF and VEGF receptor signaling by PRH mediates these effects. Our findings demonstrate that PRH is a key regulator of the VEGF signaling pathway and describe a mechanism whereby PRH plays an important role in tumorigenesis and leukemogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.