Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.
We investigate charge transport in a chemically reduced graphene oxide (RGO) film of sub-micron thickness. The I-V curve of RGO film shows current switching of the order of ∼10(5) above the threshold voltage. We found that the observed I-V curve is consistent with quantum tunnelling based charge transport. The quantum tunnelling based Simmons generalized theory was used to interpret the charge transport mechanism which shows that the current switching phenomenon is associated with transition from direct to Fowler-Nordheim (F-N) tunneling. The absence of current switching in the I-V curve after stripping away the oxygen functional groups from chemically RGO film confirms that the presence of these groups and reduced interaction between adjacent layers of RGO play a key role in charge transport. Such metal-based current switching devices may find applications in graphene-based electronic devices such as high voltage resistive switching devices.
The nitrogen doped multiwalled carbon nanotubes (MWNTs) were synthesized by microwave plasma chemical vapor deposition (MPCVD) technique. In this paper, we report the results of FTIR, Raman, and TGA studies to confirm the presence of N-doping inside carbon nanotubes. Fourier transform infrared (FTIR) studies were carried out in the range 400-4000 cm(-1) to study the attachment of nitrogen impurities on carbon nanotubes. FTIR spectra of the virgin sample of MWNTs show dominant peaks which are corresponding to Si-O, C-N, N-CH3, CNT, C-O, and C-Hx, respectively. The Si-O peak has its origin in silicon substrate whereas the other peaks are due to the precursor gases present in the gas mixture. The peaks are sharp and highly intense showing the chemisorption nature of the dipole bond. The intensity of the peaks due to N-CH3, C-N, and C-H reduces after annealing. It is interesting to note that these peaks vanish on annealing at high temperature (900 degrees C). The presence of C-N peak may imply the doping of the MWNTs with N in substitution mode. The position of this intense peak is in agreement with the reported peak in carbon nitride samples prepared by plasma CVD process, since the Raman modes are also expected to be delocalized over both carbon and nitrogen sites it was found that the intensity ratio of the D and G peaks, I(D)/I(G), varies as a function of ammonia concentration. The TGA measurements, carried out under argon flow, show that the dominant weight loss of the sample occurs in the temperature range 400-600 degrees C corresponding to the removal of the impurities and amorphous carbon.
We demonstrate the realization of an electrically-driven integrated source of surface plasmon polaritons. Light-emitting individual single-walled carbon nanotube field effect transistors were fabricated in a plasmonic-ready platform. The devices were operated at ambient condition to act as an electroluminescence source localized near the contacting gold electrodes. We show that photon emission from the semiconducting channel can couple to propagating surface plasmons developing in the electrical terminals. Momentum-space spectroscopy suggests that excited plasmon modes are bound to the metal-glass interface. Our results underline the high degree of compatibility between state-of-the art nano-optoelectronic devices and plasmonic architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.