In this paper we report the synthesis of three families of new amidine-based aromatic derivatives as potential DNA minor groove binding agents for the treatment of cancer. The preparation of mono-guanidine, mono-2-aminoimidazoline and asymmetric diphenyl guanidine/2-aminoimidazoline derivatives (compounds 1a,b,c to 8a,b,c) is presented. The affinity of these substrates and of a family of mono-and bis-isoureas (previously prepared in Rozas' laboratory) for DNA was evaluated by means of DNA thermal denaturation measurements. In particular, compounds 2c, 5c, 6c, 7c, and 8c were found to bind strongly both to natural DNA and to Adenine-Thymine oligonucleotides, showing a preference for the Adenine-Thymine base pairs sequences.Abbreviations: HB, hydrogen bond; ΔT m , increment in DNA denaturation temperature; AT, Adenine-Thymine pairs; MES, 2-(N-morpholino)ethanesulfonic acid; P/D, ratio between base pairs and ligand (drug);
Biophysical studies have been carried out on a family of asymmetric guanidinium-based diaromatic derivatives to assess their potential as DNA minor groove binding agents. To experimentally assess the binding of these compounds to DNA, solution phase biophysical studies have been performed. Thus, surface plasmon resonance, UV-visible spectroscopy and circular and linear dichroism have been utilized to evaluate binding constants, stoichiometry and mode of binding. In addition, the thermodynamics of the binding process have been determined by using isothermal titration calorimetry. These results show significant DNA binding affinity that correlates with the expected 1 : 1 binding ratio usually observed for minor groove binders. Moreover, a simple computational approach has been devised to assess the potential as DNA binders of this family of compounds.
In this paper we report the design and synthesis of a new family of asymmetric peptide linked diaromatic dications as potent DNA minor groove binders. These peptide-linked compounds, with a linear core, displayed a much larger affinity than other guanidinium-like derivatives from the same series with curved cores. As a first screening, the DNA affinity of these structures was evaluated by means of thermal denaturation experiments, finding that the nature of the cation (guanidinium vs 2-aminoimidazolinium) significantly influenced the binding strength. Their binding affinity was assessed by implementing further biophysical measurements such as surface plasmon resonance and circular dichroism. In particular, it was observed that compounds 6, 7, and 8 displayed both a strong binding affinity and significant selectivity for AT oligonucleotides. In addition, the thermodynamics of their binding was evaluated using isothermal titration calorimetry, indicating that the binding is derived from favorable enthalpic and entropic contributions.
In this paper we report the design and biophysical evaluation of novel rigid-core symmetric and asymmetric dicationic DNA binders containing 9H-fluorene and 9,10-dihydroanthracene cores as well as the synthesis of one of these fluorene derivatives. First, the affinity toward particular DNA sequences of these compounds and flexible core derivatives was evaluated by means of surface plasmon resonance and thermal denaturation experiments finding that the position of the cations significantly influence the binding strength. Then their affinity and mode of binding were further studied by performing circular dichroism and UV studies and the results obtained were rationalized by means of DFT calculations. We found that the fluorene derivatives prepared have the ability to bind to the minor groove of certain DNA sequences and intercalate to others, whereas the dihydroanthracene compounds bind via intercalation to all the DNA sequences studied here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.