SummaryThe ability of interleukin (IL)-12 to prevent tumors when administered to individuals with a genetic risk of cancer was studied in two lines of transgenic mice expressing rat HER-2/ neu oncogene in the mammary gland. Female BALB/c (H-2 d ) mice carrying the activated HER-2/ neu oncogene show no morphological abnormalities of the mammary gland until 3 wk of age. They then progress through atypical hyperplasia to in situ lobular carcinoma and at 33 wk of age all 10 mammary glands display invasive carcinomas. Adult FVB mice (H-2 q ) carrying the HER-2/ neu protooncogene develop mammary carcinomas with a longer latency (38-49 wk) and a lower multiplicity (mean of 2.6 tumors/mice). Treatment with IL-12 (5 daily intraperitoneal injections, 1 wk on, 3 wk off; the first course with 50 ng IL-12/day, the second with 100 ng IL-12/day) begun at 2 wk of age in BALB/c mice and at 21 wk of age in FVB mice markedly delayed tumor onset and reduced tumor multiplicity. Analogous results were obtained in immunocompetent and permanently CD8 ϩ T lymphocyte-depleted mice. In both transgenic lines, tumor inhibition was associated with mammary infiltration of reactive cells, production of cytokines and inducible nitric oxide synthase, and reduction in microvessel number, in combination with a high degree of hemorrhagic necrosis.
Therapeutic aptamers are single-stranded structured oligonucleotides that bind to protein targets with high affinity and specificity and modulate protein function. Aptamers are discovered by iterative rounds of selection for binding to the target protein, partitioning, and amplification of binding clones from a diverse starting library (SELEX). Postselection optimization of clones using chemical modification is directed at improving affinity, potency, and metabolic stability. A key attribute of therapeutic aptamers is the ability to tailor the pharmacokinetic profile by modulating the degree of metabolic stability and modulating renal clearance and rate of distribution by conjugation to various sizes of polyethylene glycol (PEG). In toxicology studies, therapeutic aptamers have been largely devoid of the previously reported oligonucleotide class effects of immune stimulation, complement activation, and anticoagulation; and the principal finding is the histologically visible accumulation of drug-related material in mononuclear phagocytes, a finding generally not considered an adverse effect. Good safety margins between the pharmacologically effective dose and toxicologically established no-adverse-effect levels have been observed consistently. There are presently seven aptamers either on the market or in clinical trials, but there is still much to be demonstrated in terms of chronic systemic use to fully realize the potential of this promising new class of drugs.
We hypothesized that IFN-A would enhance the apoptotic activity of bortezomib on melanoma cells. Combined treatment with bortezomib and IFN-A induced synergistic apoptosis in melanoma and other solid tumor cell lines. Apoptosis was associated with processing of procaspase-3, procaspase-7, procaspase-8, and procaspase-9 and with cleavage of Bid and poly(ADP-ribose) polymerase. Bortezomib plus IFN-A was effective at inducing apoptosis in melanoma cells that overexpressed Bcl-2 or Mcl-1, suggesting that this treatment combination can overcome mitochondrial pathways of cell survival and resistance to apoptosis. The proapoptotic effects of this treatment combination were abrogated by a caspase-8 inhibitor, led to increased association of Fas and FADD before the onset of cell death, and were significantly reduced in cells transfected with a dominant-negative FADD construct or small interfering RNA targeting Fas. These data suggest that bortezomib and IFN-A act through the extrinsic pathway of apoptosis via FADD-induced caspase-8 activation to initiate cell death. Finally, bortezomib and IFN-A displayed statistically significant antitumor activity compared with either agent alone in both the B16 murine model of melanoma and in athymic mice bearing human A375 xenografts. These data support the future clinical development of bortezomib and IFN-A for malignant melanoma. [Cancer Res 2008;68(20):8351-60]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.