Single-crystal ZnO nanowires are synthesized using a vapor trapping chemical vapor deposition method and configured as field-effect transistors. Electrical transport studies show n-type semiconducting behavior with a carrier concentration of ∼107cm−1 and an electron mobility of ∼17cm2∕Vs. The contact Schottky barrier between the Au/Ni electrode and nanowire is determined from the temperature dependence of the conductance. Thermionic emission is found to dominate the transport mechanism. The effect of oxygen adsorption on electron transport through the nanowires is investigated. The sensitivity to oxygen is demonstrated to be higher with smaller radii nanowires. Moreover, the oxygen detection sensitivity can be modulated by the gate voltage. These results indicate that ZnO holds high potential for nanoscale sensing applications.
Single crystal ZnO nanowires are synthesized and configured as field-effect transistors. Photoluminescence and photoconductivity measurements show defect-related deep electronic states giving rise to green-red emission and absorption. Photocurrent temporal response shows that current decay time is significantly prolonged in vacuum due to a slower oxygen chemisorption process. The photoconductivity of ZnO nanowires is strongly polarization dependent. Collectively, these results demonstrate that ZnO nanowire is a remarkable optoelectronic material for nanoscale device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.