Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.
The graphene surface is typically biased using either a perpendicular static electric filed or a static magnetic field via the Hall effects. In the first case, the surface impedance of graphene is isotropic and described by a scalar. In the second case, one should consider a tensor of anisotropic surface impedance.In this paper, we have limited our discussion to the scalar scenario, and we discuss here in more detail its electrically-controlled tunability properties in a non-magnetic environment. Extensions to anisotropic scenarios under the influence of magnetostatic fields may be analyzed with a similar approach.
Advances in material synthesis and in metamaterial technology offer new venues to tailor the electromagnetic properties of devices, which may go beyond conventional limits in a variety of fields and applications. Invisibility and cloaking are perhaps one of the most thought‐provoking possibilities offered by these new classes of advanced materials. Here, recently proposed solutions for invisibility and cloaking using metamaterials, metasurfaces, graphene and/or plasmonic materials in different spectral ranges are reviewed and highlighted. The focus is primarily on scattering‐cancellation approaches, describing material challenges, venues and opportunities for the plasmonic and the mantle cloaking techniques, applied to various frequency windows and devices. Analogies, potentials and relevant opportunities of these concepts are discussed, their potential realization and the underlying technology required to verify these phenomena are reviewed with an emphasis on the material aspects involved. Finally, these solutions are compared with other popular cloaking techniques.
The anomalous transmission properties of zero-permittivity ultranarrow channels are used to boost Kerr nonlinearities and achieve switching and bistable response for moderate optical intensities. Strong field enhancement, uniform all along the channel, is a typical feature of ε-near-zero supercoupling and is shown to be particularly suited to enhance nonlinear effects. This is obtained by designing narrow apertures at cutoff in a plasmonic screen. We show that this nonlinear mechanism can significantly outperform nonlinearities in traditional Fabry-Pérot resonant gratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.