Xanthomonas campestris Ohr (a protein involved in organic peroxide protection) and Escherichia coli OsmC (an osmotically inducible protein of unknown function) are related proteins. Database searches and phylogenetic analyses reveal that Ohr and OsmC homologues cluster into two related subfamilies of proteins widely distributed in both Gram-negative and Grampositive bacteria. To determine if these two subfamilies are functionally distinct, ohr and osmC in Pseudomonas aeruginosa (a bacterium with one representative from each subfamily) were analysed. Only ohr mutants are hypersensitive to organic peroxide, and this phenotype can be restored by complementation with ohr but not osmC. In addition, expression of ohr was highly induced only by organic peroxides, and not by other oxidants or stresses. In contrast, osmC was induced by ethanol and osmotic stress. A similar pattern of regulation was observed for Ohr and OsmC homologues in the Gram-positive bacterium Deinococcus radiodurans, though uninduced expression was much higher and induction lower in this species. These data clearly support the conclusion that Ohr and OsmC define two functionally distinct subfamilies with distinct patterns of regulation.
Xanthomonas campestris pv. phaseoli OhrR belongs to a major family of multiple-cysteine-containing bacterial organic hydroperoxide sensors and transcription repressors. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that changing any cysteine residue to serine did not alter the ability of OhrR to bind to the P1 ohrR-ohr promoter but drastically affected the organic hydroperoxide-sensing and response mechanisms of the protein. Xanthomonas OhrR requires two cysteine residues, C22 and C127, to sense and respond to organic hydroperoxides. Analysis of the free thiol groups in wild-type and mutant OhrRs under reducing and oxidizing conditions indicates that C22 is the organic hydroperoxide-sensing residue. Exposure to organic hydroperoxides led to the formation of an unstable OhrR-C22 sulfenic acid intermediate that could be trapped by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and detected by UV-visible spectral analysis in an oxidized C127S-C131S mutant OhrR. In wild-type OhrR, the cysteine sulfenic acid intermediate rapidly reacts with the thiol group of C127, forming a disulfide bond. The high-performance liquid chromatography-mass spectrometry analysis of tryptic fragments of alkylated, oxidized OhrR and nonreducing polyacrylamide gel electrophoresis analyses confirmed the formation of reversible intersubunit disulfide bonds between C22 and C127. Oxidation of OhrR led to cross-linking of two OhrR monomers, resulting in the inactivation of its repressor function. Evidence presented here provides insight into a new organic hydroperoxide-sensing and response mechanism for OhrRs of the multiple-cysteine family, the primary bacterial transcription regulator of the organic hydroperoxide stress response.
The genes involved in organic hydroperoxide protection in Agrobacterium tumefaciens were functionally evaluated. Gene inactivation studies and functional analyses have identified ohr, encoding a thiol peroxidase, as the gene primarily responsible for organic hydroperoxide protection in A. tumefaciens. An ohr mutant was sensitive to organic hydroperoxide killing and had a reduced capacity to metabolize organic hydroperoxides. ohr is located next to, and is divergently transcribed from, ohrR, encoding a sensor and transcription regulator of organic hydroperoxide stress. Transcription of both ohr and ohrR was induced by exposure to organic hydroperoxides but not by exposure to other oxidants. This induction required functional ohrR. The results of gel mobility shift and DNase I footprinting assays with purified OhrR, combined with in vivo promoter deletion analyses, confirmed that OhrR regulated both ohrR and ohr by binding to a single OhrR binding box that overlapped the ohrR and ohr promoters. ohrR and ohr are both required for the establishment of a novel cumene hydroperoxide-induced adaptive response. Inactivation or overexpression of other Prx family genes (prx1, prx2, prx3, bcp1, and bcp2) did not affect either the resistance to, or the ability to degrade, organic hydroperoxide. Taken together, the results of biochemical, gene regulation and physiological studies support the role of ohrR and ohr as the primary system in sensing and protecting A. tumefaciens from organic hydroperoxide stress.
ohrR encodes an organic hydroperoxide sensor and a transcriptional repressor that regulates organic hydroperoxide-inducible expression of a thiol peroxidase gene, ohr, and itself. OhrR binds directly to the operators and represses transcription of these genes. Exposure to an organic hydroperoxide leads to oxidation of OhrR and to subsequent structural changes that result in the loss of the repressor's ability to bind to the operators that allow expression of the target genes. Differential induction of ohrR and ohr by tert-butyl hydroperoxide suggests that factors such as the repressor's dissociation constants for different operators and the chemical nature of the inducer contribute to OhrR-dependent organic hydroperoxide-inducible gene expression. ohrR and ohr mutants show increased and decreased resistance to organic hydroproxides, respectively, compared to a parental strain. Moreover, the ohrR mutant had a reduced-virulence phenotype in the Pseudomonas aeruginosa-Caenorhabditis elegans pathogenicity model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.