Quantum dots (QDs) hold promise for several biomedical, life sciences and photovoltaic applications. Substantial production volumes and environmental release are anticipated. QD toxicity may be intrinsic to their physicochemical properties, or result from the release of toxic components during breakdown. We hypothesized that developing zebrafish could be used to identify and distinguish these different types of toxicity. Embryos were exposed to aqueous suspensions of CdSe core / ZnS shell QDs functionalized with either poly-L-lysine or poly(ethylene glycol) terminated with methoxy, carboxylate, or amine groups. Toxicity was influenced by the QD coating, which also contributed to the QD suspension stability. At sublethal concentrations, many QD preparations produced characteristic signs of Cd toxicity that weakly correlated with metallothionein expression, indicating that QDs are only slightly degraded in vivo. QDs also produced distinctly different toxicity that could not be explained by Cd release. Using the zebrafish model, we were able to distinguish toxicity intrinsic to QDs from that caused by released metal ions. We conclude that developing zebrafish provide a rapid, low-cost approach for assessing structure-toxicity relationships of nanoparticles.
The toxicity of engineered nanoparticles is expected to depend in part on their stability in biological systems. To assess the biodurability of engineered nanomaterials in the human digestive system, we adapted an in vitro assay previously used to evaluate the bioaccessibility of metals in contaminated soils. The compositions of the simulated gastric and intestinal fluids, temperature and residence times were designed to closely mimic conditions in the stomach and duodenum of the small intestine. We demonstrated the utility of the assay using CdSecore/ZnSshell quantum dots functionalized with polyethylene glycol (PEG) thiol of two different molecular masses (PEG350 and PEG5000). Under gastric conditions, removal of the PEG ligand diminished the stability of PEG350-quantum dot suspensions, while PEG5000-quantum dots were severely degraded. Inclusion of the glycoprotein mucin, but not the digestive protein pepsin, in simulated gastric fluids provided both PEG350- and PEG5000-coated quantum dots partial protection from transformations induced by gastric conditions.
Once released into the environment, engineered nanoparticles (eNPs) are subjected to processes that may alter their physical or chemical properties, potentially altering their toxicity vis-à-vis the as-synthesized materials. We examined the toxicity to zebrafish embryos of CdSecore/ZnSshell quantum dots (QDs) before and after exposure to an in vitro chemical model designed to simulate oxidative weathering in soil environments based on a reductant-driven Fenton’s reaction. Exposure to these oxidative conditions resulted in severe degradation of the QDs: the Zn shell eroded, Cd2+ and selenium were released, and amorphous Se-containing aggregates were formed. Weathered QDs exhibited higher potency than did as-synthesized QDs. Morphological endpoints of toxicity included pericardial, ocular and yolk sac edema, non-depleted yolk, spinal curvature, tail malformations, and craniofacial malformations. To better understand the selenium-like toxicity observed in QD exposures, we examined the toxicity of selenite, selenate and amorphous selenium nanoparticles (SeNPs). Selenite exposures resulted in high mortality to embryos/larvae while selenate and SeNPs were non-toxic. Co-exposures to SeNPs + CdCl2 resulted in dramatic increase in mortality and recapitulated the morphological endpoints of toxicity observed with weathered QD exposures. Cadmium body burden was increased in larvae exposed to weathered QDs or SeNP + CdCl2 suggesting the increased potency of weathered QDs was due to selenium modulation of cadmium toxicity. Our findings highlight the need to examine the toxicity of eNPs after they have undergone environmental weathering processes.
Statistically significant dose-responsive constituent changes and an increase in mutagenicity were observed with inclusion of Pigment Yellow 14 and Pigment Blue 15. Other pigments showed minimal toxicological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.