Anopheles darlingi is a major vector for malaria in Central and South America. Behavioral, ecological, genetic, and morphologic variability has been observed across its wide distribution. Recent studies have documented that 2 distinct genotypes exist for An. darlingi: a northern lineage (Belize, Guatemala, Colombia, Venezuela, and Panama) and a southern lineage (Amazonia and southern Brazil). In order to determine if these genotypes exhibited different behavioral traits, entrance and exit movement patterns between 2 field populations of An. darlingi that represented each genotype were evaluated using experimental huts. The Belize population exhibited bimodal entrance, with peak entry occurring between 7:00-8:00 p.m. and 5:00-6:00 a.m. and peak exiting occurring between 7:00-8:00 p.m. The Peru population exhibited unimodal entrance, with peak entry occurring between 10:00-11:00 p.m. and peak exiting occurring between 11:00-12:00 a.m. with a secondary smaller peak at 2:30 a.m. Entrance and exit behavioral patterns were significantly different between the Belize and Peru populations of An. darlingi (log-rank [Mantel-Cox] P < 0.001). Information from the present study will be used in the future to determine if there is a correlation between genotype and host-seeking behavior and can be used in the present for regional vector risk assessment.
BackgroundDrug susceptibility testing for Mycobacterium tuberculosis (MTB) is difficult to perform in resource-limited settings where Acid Fast Bacilli (AFB) smears are commonly used for disease diagnosis and monitoring. We developed a simple method for extraction of MTB DNA from AFB smears for sequencing-based detection of mutations associated with resistance to all first and several second-line anti-tuberculosis drugs.
MethodsWe isolated MTB DNA by boiling smear content in a Chelex solution, followed by column purification. We sequenced PCR-amplified segments of the rpoB, katG, embB, gyrA, gyrB, rpsL, and rrs genes, the inhA, eis, and pncA promoters and the entire pncA gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.