Any improvement in Blast Furnace productivity under a given set of operating conditions is fundamentally related to better flow distribution of gas through layered burden structure in Blast Furnace. Flow distribution and hence pressure drop of gas in granular zone of blast furnace is dependent on number and thickness of alternating layers of coke and metallic burden. A significant part of this total pressure drop in granular zone can be attributed to interfacial resistance between two successive layers. Whereas, pressure drop in porous layers of materials can be described by well known Ergun's equation in terms of all physical parameters, interface resistance needs specific treatment. Systematic study to investigate the effect of interfacial resistance on gas flow between two successive layers of different material has been attempted in this work.Laboratory scale experiments in scale down model of blast furnace were conducted to establish and quantify interface resistance for different layer configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.