The developed method and algorithms allow a detailed characterization of four main dimensions of working time patterns potentially relevant for health. We recommend this method for future large-scale epidemiological studies.
PurposeAlthough shift work disorder (SWD) affects a major part of the shift working population, little is known about its manifestation in real life. This observational field study aimed to provide a detailed picture of sleep and alertness among shift workers with a questionnaire-based SWD, by comparing them to shift workers without SWD during work shifts and free time.MethodsSWD was determined by a questionnaire. Questionnaires and 3-week field monitoring, including sleep diaries, actigraphy, the Karolinska Sleepiness Scale (KSS), EEG-based sleep recordings, and Psychomotor Vigilance Tasks (PVT), were used to study 22 SWD cases and 9 non-SWD workers.ResultsThe SWD group had a shorter subjective total sleep time and greater sleep debt before morning shifts than the non-SWD group. Unlike the non-SWD group, the SWD group showed little compensatory sleep on days off. The SWD group had lower objective sleep efficiency and longer sleep latency on most days, and reported poorer relaxation at bedtime and sleep quality across all days than the non-SWD group. The SWD group’s average KSS-sleepiness was higher than the non-SWD group’s sleepiness at the beginning and end of morning shifts and at the end of night shifts. The SWD group also had more lapses in PVT at the beginning of night shifts than the non-SWD group.ConclusionsThe results indicate that SWD is related to disturbed sleep and alertness in association with both morning and night shifts, and to less compensatory sleep on days off. SWD seems to particularly associate with the quality of sleep.Electronic supplementary materialThe online version of this article (10.1007/s00420-018-1386-4) contains supplementary material, which is available to authorized users.
Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 ± 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 ± 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: “Nervous System Development” (FDR P value < 0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.