Atomically precise nanoclusters (NCs) have recently emerged as ideal building blocks for constructing self‐assembled multifunctional superstructures. The existing structures are based on various non‐covalent interactions of the ligands on the NC surface, resulting in inter‐NC interactions. Despite recent demonstrations on light‐induced reversible self‐assembly, long‐range reversible self‐assembly based on dynamic covalent chemistry on the NC surface has yet to be investigated. Here, it is shown that Au25 NCs containing thiolated umbelliferone (7‐hydroxycoumarin) ligands allow [2+2] photocycloaddition reaction‐induced self‐assembly into colloidal‐level toroids. The toroids upon further irradiation undergo inter‐toroidal reaction resulting in macroscopic supertoroidal honey‐comb frameworks. Systematic investigation using electron microscopy, atomic force microscopy (AFM), and electron tomography (ET) suggest that the NCs initially form spherical aggregates. The spherical structures further undergo fusion resulting in toroid formation. Finally, the toroids fuse into macroscopic honeycomb frameworks. As a proof‐of‐concept, a cross‐photocycloaddition reaction between coumarin‐tethered NCs and an anticancer drug (5‐fluorouracil) is demonstrated as a model photo‐controlled drug release system. The model system allows systematic loading and unloading of the drug during the assembly and disassembly under two different wavelengths. The results suggest that the dynamic covalent chemistry on the NC surface offers a facile route for hierarchical multifunctional frameworks and photocontrolled drug release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.