This study investigates the elastic buckling behavior of oblate hemi-ellipsoidal shells (OHES) subjected to non-uniform external hydrostatic pressure. The virtual work-energy of OHES consists of virtual strain energy due to membrane, bending, in-plane stress resultants, and virtual work of hydrostatic pressure. For buckling analysis, the geometric stiffness matrix is obtained from the strain energy due to in-plane stress resultants. A finite element procedure via a C1 continuity axisymmetric element is applied to solve the critical hydrostatic pressure from the eigenvalue buckling problem. The buckling pressure of the hemi-ellipsoidal dome subjected to uniform external pressure is verified with the previous research and FEM commercial software. Present results also indicate that the maximum in-plane stress of the hemi-ellipsoidal shell shapes are near the apex point as the axisymmetric buckling shape. In the case of hydrostatic pressure, the critical hydrostatic pressure of OHES is determined and are in good agreement when compared with the experimental results in published research. Furthermore, the shape ratio influences the difference in critical load results between uniform pressure and hydrostatic pressure, especially when the shape ratio is higher than 0.5 and the [Formula: see text] ratio is less than or equal to 100. Seawater depth limitations in subsea engineering are also presented and found that the shell thickness and shape ratio are the major factors affecting critical seawater depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.