Population-based data suggest that high intake of omega-3 (n-3) polyunsaturated fatty acids (PUFA) may be beneficial in a variety of health conditions. It is likely that mainly those patients with preexisting n-3 deficiency are those that benefit most from n-3 fatty acid supplementation. Therefore, for targeted interventions, a fast and reliable screening tool for n-3 PUFA intake is necessary. Thus, the aim of this project was to adapt and validate a food frequency questionnaire (FFQ) for n-3 PUFA intake in Switzerland while using as references the following: (1) 7-day food records (FR), and (2) n-3 fatty acid composition of red blood cells (RBC). We recruited 46 healthy adults for the first part of the study and 152 for the second. We used the dietary software EBISpro for the analysis of n-3 PUFA intake. RBC fatty acid composition was determined by gas chromatography mass spectrometry (GC-MS). Using correlation analysis, we found a moderate significant association between FFQ and FR for α-linolenic acid (ALA), eicosapentanoic acid (EPA), docosahexanoic acid (DHA), and total n-3 fatty acids (all r between 0.523 and 0.586, all p < 0.001). Bland Altman analysis further showed good agreement between the two methods and no proportional bias. Correlations between FFQ and RBC fatty acid composition were also moderate for EPA and DHA (r = 0.430 and r = 0.605, p < 0.001), but weaker for ALA and total n-3 (r = 0.314 and r = 0.211, p < 0.01). The efficacy of the FFQ to classify individuals into the same or adjacent quartile of RBC PUFA content ranged between 70% and 87% for the different fatty acids. In conclusion, we showed that the Swiss n-3 PUFA FFQ is a valid tool to assess dietary n-3 PUFA intake, especially DHA and EPA, to determine population groups at risk for low intake.
Background Lipid emulsions are a key component of total parenteral nutrition (TPN) and are administered to patients who are unable to ingest their daily required calories orally. Lipid emulsions rich with n–6 (ω-6) PUFAs are known to cause parenteral nutrition–associated liver disease and have inflammatory side effects, whereas n–3 PUFA-rich emulsions have favourable clinical outcomes. Objectives The present study used targeted lipid mediator analysis to investigate the metabolism of a n–3 PUFA-rich lipid emulsion and a n–6 PUFA-rich lipid emulsion in a mouse model of TPN and in primary human monocyte-derived macrophages (MDMs) and CD4+ T cells. Results Mice given n–3 PUFA-based TPN for 7 d had a less proinflammatory lipid mediator profile compared with those receiving n–6 PUFA-based TPN. This was characterized by higher concentrations of specialized pro-resolving mediators (SPMs) and endocannabinoids, including resolvin D (RvD) 1, maresin (MaR) 1, MaR2, protectin D1 (PD1), protectin DX (PDX), and the endocannabinoids eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) in the liver and RvD1, 17R-RvD1, RvD2, RvD3, RvD5, MaR1, MaR2, PD1, PDX, and EPEA and DHEA in the spleen. The spleen was identified as a source of high lipid mediator and SPM formation as lipid mediator concentrations were on average 25-fold higher than in the liver. Additionally, n–3 PUFA-treated primary human MDMs produced RvD5 and the endocannabinoids EPEA and DHEA, which was associated with an increased IL-10 secretion. In contrast, primary human CD4+ T cells showed only an increase in SPM precursors and an increase in the endocannabinoids EPEA and DHEA, which was associated with reduced cytokine expression. Conclusions This demonstrates that lipid mediators, particularly SPMs and endocannabinoids from spleen, could play a key role in facilitating the favorable clinical outcomes associated with the use of n–3 PUFA-rich lipid emulsions in TPN.
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by low bone density, bone fragility and recurrent fractures. The characterization of its heterogeneous genetic basis has allowed the identification of novel players in bone development. In 2016, we described the first X-linked recessive form of OI caused by hemizygous MBTPS2 missense variants resulting in moderate to severe phenotypes. MBTPS2 encodes site-2 protease (S2P), which activates transcription factors involved in bone (OASIS) and cartilage development (BBF2H7), ER stress response (ATF6) and lipid metabolism (SREBP) via regulated intramembrane proteolysis. In times of ER stress or sterol deficiency, the aforementioned transcription factors are sequentially cleaved by site-1 protease (S1P) and S2P. Their N-terminal fragments shuttle to the nucleus to activate gene transcription. Intriguingly, missense mutations at other positions of MBTPS2 cause the dermatological spectrum condition Ichthyosis Follicularis, Atrichia and Photophobia (IFAP) and Keratosis Follicularis Spinulosa Decalvans (KFSD) without clinical overlap with OI despite the proximity of some of the pathogenic variants. To understand how single amino acid substitutions in S2P can lead to non-overlapping phenotypes, we aimed to compare the molecular features of MBTPS2-OI and MBTPS2-IFAP/KFSD, with the ultimate goal to unravel the pathomechanisms underlying MBTPS2-OI. RNA-sequencing-based transcriptome profiling of primary skin fibroblasts from healthy controls (n = 4), MBTPS2-OI (n = 3), and MBTPS2-IFAP/KFSD (n = 2) patients was performed to identify genes that are differentially expressed in MBTPS2-OI and MBTPS2-IFAP/KFSD individuals compared to controls. We observed that SREBP-dependent genes are more downregulated in OI than in IFAP/KFSD. This is coupled to alterations in the relative abundance of fatty acids in MBTPS2-OI fibroblasts in vitro, while no consistent alterations in the sterol profile were observed. Few OASIS-dependent genes are suppressed in MBTPS2-OI, while BBF2H7- and ATF6-dependent genes are comparable between OI and IFAP/KFSD patients and control fibroblasts. Importantly, we identified genes involved in cartilage physiology that are differentially expressed in MBTPS2-OI but not in MBTPS2-IFAP/KFSD fibroblasts. In conclusion, our data provide clues to how pathogenic MBTPS2 mutations cause skeletal deformities via altered fatty acid metabolism or cartilage development that may affect bone development, mineralization and endochondral ossification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.