Replication of flaviviruses (family Flaviviridae) occurs in specialized virus-induced membrane structures (IMS). The cellular composition of these IMS varies for different flaviviruses implying different organelle origins for IMS biogenesis. The role of flavivirus non-structural (NS) proteins for the alteration of IMS remains controversial. In this report, we demonstrate that West Nile virus strain New York 99 (WNVNY99) remodels the endoplasmic reticulum (ER) membrane to generate specialized IMS. Within these structures, we observed an element of the cis-Golgi, viral double-stranded RNA, and viral-envelope, NS1, NS4A and NS4B proteins using confocal immunofluorescence microscopy. Biochemical analysis and microscopy revealed that NS4B lacking the 2K-signal peptide associates with the ER membrane where it initiates IMS formation in WNV-infected cells. Co-transfection studies indicated that NS4A and NS4B always remain co-localized in the IMS and are associated with the same membrane fractions, suggesting that these proteins function cooperatively in virus replication and may be an ideal target for antiviral drug discovery.
Background: Nitric oxide production by macrophages is conventionally attributed to inducible nitric-oxide synthase activity. Results: Low levels of nitric oxide are generated by neuronal nitric-oxide synthase during engagement of Fc␥-receptors on unprimed macrophages. Conclusion: Immune complexes trigger low output nitric oxide that promotes autocrine/paracrine phagocytosis. Significance: A new role is identified for neuronal nitric-oxide synthase in macrophages.
Kava (Piper methysticum Forst F.), or àwa in the Hawaiian language, has been used for thousands of years by the people of the South Pacific Islands, in particular Fiji, Vanuatu, Tonga, and Samoa, for social and ceremonial occasions. Kava has the unique ability to promote a state of relaxation without the loss of mental alertness. Kava recently became part of the herbal pharmacopoeia throughout the United States and Europe because of its anxiolytic properties. The active compounds are collectively called kavalactones (or kava pyrones). The need for a less time-consuming and costly method to determine the concentration of kavalactones in dried kava is urgent. The combination of near-infrared reflectance spectroscopy (NIRS) and partial least-squares (PLS) methods has been found to be a convenient, versatile, and rapid analytical tool for determination of kavalactones in dried kava powder. Calibration equations were developed based on the analyses of 110 samples with variable physical and chemical properties collected over time from Hawaii kava growers and validated by analyses of a set of 12 samples with unknown kavalactones concentration. All six major kavalactones and the total kavalactones were measured using NIRS with accuracy acceptable for commercial use. The NIRS measurements are reproducible and have a repeatability on a par with HPLC methods.
We previously demonstrated that dengue virus (DENV) nonstructural 4B protein (NS4B) induced dengue hemorrhagic fever (DHF)-associated immunomediators in THP-1 monocytes. Moreover, cleavage of NS4AB polyprotein by the NS2B3 protease, significantly increased immunomediator production to levels found after DENV infection. In this report using primary human microvascular endothelial cells (HMVEC) transwell permeability model and HMVEC monolayer, we demonstrate that the immunomediators secreted in the supernatants of DENV-infected monocytes increase HMVEC permeability and expression of ICAM-1, VCAM-1 and E-selectin. Moreover, maturation of NS4B via cleavage of 2KNS4B is sufficient to induce immunomediators that cause HMVEC phenotypic changes, which appear to be synergistically induced by TNFα and IL-8. These data suggest that therapies targeting the maturation steps of NS4B, particularly 2KNS4B processing, may reduce overall DHF-associated immunomediator levels, thereby reducing DHF-associated morbidity and mortality. Alternatively, TNFα inhibitors may be a valid intervention strategy during the later stages of infection to prevent DHF progression.
High levels of viremia and chemokines and cytokines underlie the progression of severe dengue disease. Dengue virus (DENV) preferentially infects peripheral blood monocytes, which secrete elevated levels of immunomediators in patients with severe disease. Further, DENV nonstructural proteins (NS) are capable of modifying intracellular signaling, including interferon inhibition. We demonstrate that peak secretions of immunomediators such as IL-6, IL-8, IP-10, TNFα or IFNγ in DENV-infected monocytes correlate with maximum virus production and NS4B and NS5 are primarily responsible for the induction of immunomediators. Furthermore, we demonstrate that sequential NS4AB processing initiated by the viral protease NS2B3(pro) and via the intermediate 2KNS4B significantly enhances immunomediator induction. While the 2K-signal peptide is not essential for immunomediator induction, it plays a synergistic role with NS4B. These data suggest that NS4B maturation is important during innate immune signaling in DENV-infected monocytes. Given similar NS4B topologies and polyprotein processing across flaviviruses, NS4B may be an attractive target for developing Flavivirus-wide therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.