This article presents a comprehensive analysis of surface characteristics and drilling performance of uncoated and coated tungsten carbide drills. The single- and double-layer coatings of TiN, TiAlN and AlCrN were examined in terms of surface roughness, microhardness and crack resistance. In addition, drilling torque and thrust force were experimentally measured and compared to the developed models based on the drilling mechanics and drill geometries. Tool wear and hole surface roughness were also considered to assess the machining performance of different coated tools. The results revealed that all coated drills can offer better cut surface quality, 28% lower cutting loads and longer tool life than the uncoated drills. Although AlCrN was found to be the hardest coating material among the others, it caused large wear on the cutting edges and poor surface roughness of produced holes. The lowest torque and thrust force were achievable using TiN-coated drill, while the use of TiAlN coating resulted in the lowest surface roughness and smallest tool wear. Furthermore, the drilling torque and thrust force model developed in this study were found to correspond to the experimental measures with the average error of 8.4%. The findings of this work could facilitate the selection of coating materials to advance the machining performance.
This paper presents the laser surface polishing of titanium alloy (Ti6Al4V) by using a nanosecond pulse laser. Air, nitrogen and argon were employed as a shielding gas in this study, where the areal roughness (Sa) of laser-polished surface was measured and compared. The results showed that argon was the suitable assist gas for improving the metal surface without causing the oxidation. The effect of laser pulse repetition rate and scan speed on the surface roughness was also investigated in this study. The use of high repetition rate together with slow scan speed was able to reduce the surface roughness of titanium alloy. The roughness was found to be reduced by 47% when the pulse repetition rate of 500 kHz and scan speed of 50 mm/s were applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.