While Vibrio parahaemolyticus (Vp AHpnD) has been identified as the cause of early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) in shrimp, mechanisms of host response remain unknown. Understanding these processes is important to improve farming practices because this understanding will help to develop methods to enhance shrimp immunity. Pre-treatment of shrimp with 5-minute chronic non-lethal heat stress (NLHS) for 7 days was found to significantly increase Litopenaeus vannamei survival against Vp AHpnD infection. To elucidate the mechanism involved, mRNA and miRNA expression profiles from the hemocyte of L. vannamei challenged with Vp AHpnD after NLHS with corresponding control conditions were determined by RNA-Seq. A total of 2,664 mRNAs and 41 miRNAs were differentially expressed after the NLHS treatment and VP AHpnD challenge. A miRnA-mRNA regulatory network of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) was subsequently constructed and the interactions of DEMs in regulating the NLHSinduced immune-related pathways were identified. Transcriptomic data revealed that miRNA and mRNA interactions contribute to the modulation of NLHS-induced immune responses, such as the prophenoloxidase-activating system, hemocyte homeostasis, and antimicrobial peptide production, and these responses enhance Vp AHpnD resistance in L. vannamei. During its first outbreak, the devastating effect of early mortality syndrome (EMS) on the global shrimp industry was primarily caused by the lack of information regarding the disease and its causative agent 1. Later studies that were focused on mitigating this disease eventually identified the cause to be a toxin-harboring Vibrio parahaemolyticus, which causes Acute hepatopancreatic necrosis disease (AHPND) (VP AHPND) 2. This highlights how understanding disease etiology and a subsequent elucidation of host response can help to mitigate the effects of an outbreak. Understanding the functions of the shrimp immune system during disease progression is thus expected to create opportunities for the development of effective and efficient management strategies for VP AHPND infection. Likewise, information regarding the molecular mechanisms of AHPND tolerance can lead to platforms for the development of AHPND-resistant shrimp through selective breeding using markers mined from transcriptome analyses at different rearing conditions.
Viruses subvert macromolecular pathways in infected host cells to aid in viral gene amplification or to counteract innate immune responses. Roles for host-encoded, noncoding RNAs, including microRNAs, have been found to provide pro-and anti-viral functions. Recently, circular RNAs (circRNAs), that are generated by a nuclear back-splicing mechanism of pre-mRNAs, have been implicated to have roles in DNA virus-infected cells. This study examines the circular RNA landscape in uninfected and hepatitis C virus (HCV)infected liver cells. Results showed that the abundances of distinct classes of circRNAs were up-regulated or down-regulated in infected cells. Identified circRNAs displayed proviral effects. One particular up-regulated circRNA, circPSD3, displayed a very pronounced effect on viral RNA abundances in both hepatitis C virus-and Dengue virus-infected cells. Though circPSD3 has been shown to bind factor eIF4A3 that modulates the cellular nonsense-mediated decay (NMD) pathway, circPSD3 regulates RNA amplification in a pro-viral manner at a post-translational step, while eIF4A3 exhibits the anti-viral property of the NMD pathway. Findings from the global analyses of the circular RNA landscape argue that pro-, and likely, anti-viral functions are executed by circRNAs that modulate viral gene expression as well as host pathways. Because of their long half-lives, circRNAs likely play hitherto unknown, important roles in viral pathogenesis.
Acute hepatopancreatic necrosis disease (AHPND) caused by PirABVP-producing strain of Vibrio parahaemolyticus, VPAHPND, has seriously impacted the shrimp production. Although the VPAHPND toxin is known as the VPAHPND virulence factor, a receptor that mediates its action has not been identified. An in-house transcriptome of Litopenaeus vannamei hemocytes allows us to identify two proteins from the aminopeptidase N family, LvAPN1 and LvAPN2, the proteins of which in insect are known to be receptors for Cry toxin. The membrane-bound APN, LvAPN1, was characterized to determine if it was a VPAHPND toxin receptor. The increased expression of LvAPN1 was found in hemocytes, stomach, and hepatopancreas after the shrimp were challenged with either VPAHPND or the partially purified VPAHPND toxin. LvAPN1 knockdown reduced the mortality, histopathological signs of AHPND in the hepatopancreas, and the number of virulent VPAHPND bacteria in the stomach after VPAHPND toxin challenge. In addition, LvAPN1 silencing prevented the toxin from causing severe damage to the hemocytes and sustained both the total hemocyte count (THC) and the percentage of living hemocytes. We found that the rLvAPN1 directly bound to both rPirAVP and rPirBVP toxins, supporting the notion that silencing of LvAPN1 prevented the VPAHPND toxin from passing through the cell membrane of hemocytes. We concluded that the LvAPN1 was involved in AHPND pathogenesis and acted as a VPAHPND toxin receptor mediating the toxin penetration into hemocytes. Besides, this was the first report on the toxic effect of VPAHPND toxin on hemocytes other than the known target tissues, hepatopancreas and stomach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.