Excessive exploitation of petroleum-based plastics and synthetic fibers is harming the environment. This study isolated nano-fibrillated cellulose (NFC) from plant fiber (Agave americana). The as-extracted Agave fibers were chemically treated (alkali, bleaching, and acid hydrolysis coupled with ultrasonication). Functional and structural analysis were performed using Fourier-transform infrared spectroscopy and X-ray diffraction. The surface morphological changes and thermal decomposition behavior were studied by scanning electron microscopy and by thermogravimetry and derivative thermogravimetry, respectively. Fourier-transform infrared peaks confirmed the absence of lignin and hemicellulose in the NFC samples. X-ray diffraction data revealed that the crystallinity index increased from 50.1% to 64.1% from the raw fiber to the NFC. Thermogravimetry and derivative thermogravimetry showed that the stability increased notably from the raw fiber to the NFC stage. The average particle size was 18.2 nm ± 10.14 nm in the NFC sample, which was confirmed by transmission electron microscopy.
Hydroxypropylmethylcellulose (HPMC) is popularly known as a hydrocolloid for potential use as a biopolymer film. The films of HPMC exhibit brittleness, lacking flexibility, but they can provide a gas barrier. With the aim of improving the HPMC film properties, nanofibrillated cellulose (NFC) from the succulent plant Agave americana L was incorporated as reinforcement material using the solution casting method. The films were prepared with three different amounts of NFC with glycerol as a plasticizer. The incorporation of the NFC into the nanocomposite films showed a 1,000-fold reduction in the gas permeability. However, significant improvements in the tensile strength (TS), the elongation at break (EAB), and Young’s modulus (YM) were only observed with 1% NFC. A higher moisture content (24.5%) and a higher solubility (59.5%) were observed in the HPMC/NFC-1 film, which also exhibited the best biodegradability loss of the films that were observed with a 92.8% degradation rate in 15 d of soil burial studies. Therefore, the results evidence that the HPMC/NFC films might be potentially suitable as food wrap packaging on perishable produce of fruits and vegetables to maintain their quality attributes and prolong the storage life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.