Fire, a frequent disturbance in the Mediterranean, affects pollinator communities. We explored the response of major pollinator guilds to fire severity, across a fire‐severity gradient at different spatial scales. We show that the abundance of all pollinator groups responded to fire severity, and that bees and beetles showed in addition a significant species‐diversity response. Bees, sawflies, and wasps responded to fire severity at relatively small spatial scales (250–300 m), whereas flies and beetles responded at larger spatial scales. The response of bees, sawflies, and wasps was unimodal, as predicted by the intermediate disturbance hypothesis, whereas flies and beetles showed a negative response. A possible explanation is that the observed patterns (spatial scale and type of response) are driven by taxa‐specific ecological and life‐history traits, such as nesting preference and body size, as well as the availability of resources in the postfire landscape. Our observational study provides an insight into the effect of fire severity on pollinators. However, future research exploring the explicit link between the pre‐ and postfire landscape structure and pollinator traits and responses is required for further establishment and understanding of cause–effect relationships.
Risk management typologies and their resulting archetypes can structure the many social and biophysical drivers of community wildfire risk into a set number of strategies to build community resilience. Existing typologies omit key factors that determine the scale and mechanism by which exposure from large wildfires occur. These factors are particularly important for land managing agencies like the US Forest Service, which must weigh community wildfire exposure against other management priorities. We analyze community wildfire exposure from national forests by associating conditions that affect exposure in the areas where wildfires ignite to conditions where exposure likely occurs. Linking source and exposure areas defines the scale at which crossboundary exposure from large wildfires occurs and the scale at which mitigation actions need to be planned. We find that the vast majority of wildfire exposure from national forests is concentrated among a fraction of communities that are geographically clustered in discrete pockets. Among these communities, exposure varies primarily based on development patterns and vegetation gradients and secondarily based on social and ecological management constraints. We describe five community exposure archetypes along with their associated risk mitigation strategies. Only some archetypes have conditions that support hazardous fuels programs. Others have conditions where managing community exposure through vegetation management is unlikely to suffice. These archetypes reflect the diversity of development patterns, vegetation types, associated fuels, and management constraints that exist in the western US and provide a framework to guide public investments that improve management of wildfire risk within threatened communities and on the public lands that transmit fires to them.
Federal land managers in the US can be informed with quantitative assessments of the social conditions of the populations affected by wildfires originating on their administered lands in order to incorporate and adapt their management strategy to achieve a more targeted prioritization of community wildfire protection investments. In addition, these assessments are valuable to socially vulnerable communities for quantifying their exposure to wildfires originating on adjacent land tenures. We assessed fire transmission patterns using fire behavior simulations to understand spatial variations across three diverse study areas (North-central Washington; Central California; and Northern New Mexico) to understand how different land tenures affect highly socially vulnerable populated places. Transboundary wildfire structure exposure was related to populations with limited adaptive capacity to absorb, recover and modify exposure to wildfires, estimated with the Social Vulnerability Index using US Census unit data (block groups). We found geographic heterogeneity in terms of land tenure composition and estimated fire exposure. Although high social vulnerability block groups covered small areas, they had high population and structure density and were disproportionately exposed per area burned by fire. Structure exposure originated primarily from three key land tenures (wildland-urban interface, private lands and national forests). Federal lands proportionately exposed, on an area basis, populated places with high social vulnerability, with fires ignited on Forest Service administered lands mostly affecting north-central Washington and northern New Mexico communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.