A simple and cost-effective methodology employing environmentally benign substances for the fabrication of white-light emitting materials is important for practical applications in the field of lighting and display devices. Designing purely organic-based white-light-emitting systems with high quantum efficiency in aqueous media is an unmet challenge. With this objective, a new class of pyridoindole-based hydrophobic fluorophore 6,7,8,9-tetrapropylpyrido[1,2-a]indole-10-carbaldehye (TPIC) was introduced. A strategy of self-assembly using nonionic surfactants was employed to enhance the fluorescence of TPIC in an aqueous medium and was exploited as energy donor. The steady-state and time-resolved emission spectra analysis revealed the micelle-mediated energy transfer from TPIC to Nile red (energy acceptor) leading to tunable fluorescence along with white-light emission. The white-light emitting aqueous solution was obtained with the Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.33, 0.36) and significantly high quantum yield of 37 %. Solid-state white-light emission was achieved retaining the assembly of fluorophores in the form of a gel having the high quantum efficiency of 33 % with CIE coordinates of (0.32, 0.36); close to that of pure white light. The bright white luminescence of the inscription prepared using white-light emitting gel on a solid substrate offers promising applications for full-color flat panel displays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.