Background: Recalcitrant nature is a major constraint for the in vitro regeneration and genetic transformation of leguminous species members. Therefore, an improved genetic transformation in horse gram has been developed via in planta method, in which Agrobacterium strain harboring binary vector pCAMBIA2301 was used for the transformation. Several factors affecting in planta transformations were put forth viz. Agrobacterium cell density, cocultivation, and sonication combined with vacuum infiltration duration which were optimized.Results: Germinated seeds were sonicated and vacuum infiltrated with different densities of Agrobacterium culture and co-cultivated in half-strength MS medium with 100 μM of acetosyringone for 48 h. Seedlings were washed with cefotaxime and sowed in vermiculite soil for maturation. T 1 plants were subjected to histochemical and molecular analysis to ensure transformation efficiency. Among various combinations analyzed, maximum transformation efficiency (20.8%) was attained with seeds of 5 min sonication combined with vacuum infiltration with 0.6 optical density of Agrobacterium culture.Conclusions: It concludes that a different Agrobacterium cell density with sonication combined with vacuum infiltration has improved transgenic efficiency in horse gram plants. This simple and efficient method is feasible for the stable expression of foreign genes that could be beneficial for future food security.
Triphenyl phosphate (TPhP) is a broad-spectrum organophosphate compound widely used as an additive in several products to prevent ignition. However, its utilization produces a hazardous impact on various organisms. So far, very few studies have investigated the acute toxicity of TPhP at environmentally relevant concentrations in nontarget aquatic species. This study aimed to assess whether the short-term exposure of TPhP (4, 20, and 100 μg L −1 ) affects the oxidative stress, antioxidant activity, biomolecule metabolism, DNA stability, chromosomal integrity, apoptosis, and pathological changes in various organs of Labeo rohita fingerlings. The results illustrated that the reactive oxygen species (ROS) production and lipid peroxidation (LPO) rates were significantly higher in tissues (brain, liver, and kidney) of TPhP-treated groups. Interestingly, superoxide dismutase (SOD) and catalase (CAT) activities were remarkably decreased in tissues following TPhP exposure. The levels of protein, glucose, total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) in various tissues were also found to be significantly altered in TPhPexposed fish fingerlings. These significant alterations in the antioxidant system and biochemical profile induced genotoxic responses such as DNA and chromosomal damage in the fish fingerlings. Furthermore, the incidence of the observed genotoxic responses was also found to be dose-dependent. Likewise, the apoptotic responses were also significantly altered following TPhP acute exposure in L. rohita fingerlings. The subsequent effects on oxidative stress, antioxidant inhibition, dysregulated biomolecule metabolism, and genotoxicity might be the possible reason for the observed pathological changes in various tissues of L. rohita. Taken together, the present findings showed that the toxicity of TPhP is principally associated with exposure concentrations. Therefore, this study illustrates the toxicity risks of TPhP to vertebrate organisms at real-world concentrations.
Purpose: The aim of the research was to analyze the drought hazard occurrence, perceptional differences among residents to drought hazard occurrence, and explore the resilience mechanisms at household, community level, and institutional level to recover from drought hazards Theoretical framework: The research dealt with the theoretical aspects of how hazards occurrence can be observed through the perceptional differences of the residents in a particular area. Adoption of short- and long-term drought resilience mechanisms is inevitable to recover from drought hazards. Design/methodology/approach: This study is based on exploratory research design. Four ‘kebeles’ were selected considering drought classifications and 200 respondents were chosen. Descriptive statistics, Timeline Approach and ANOVA were used to analyze the data collected. Findings: Majority of respondents know about drought hazard occurrence, causes at their level, and experienced the effects of drought. There are significant perceptional differences among respondents across educational and marital status, and monthly income. Research, Practical & Social implications: Household and community participation is essential for adopting drought resilience mechanisms with the support of governmental and non-governmental agencies. Originality/value: This Study focused on drought hazard occurrence and resilience mechanisms at household and community level to recover drought hazards. The originality / value of the study lies with perceptional differences on drought hazards occurrence using the Timeline approach and ANOVA. The findings of this study would contribute to design and implement effective drought resilience mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.