Our visual system's ability to group visual elements into meaningful entities and to separate them from others is referred to as scene segmentation. Visual motion often provides a powerful cue for this process as parallax or coherence can inform the visual system about scene or object structure. Here we tested the hypothesis that scene segmentation by motion cues relies on a common neural substrate in the parietal cortex. We used fMRI and a set of three entirely distinct motion stimuli to examine scene segmentation in the human brain. The stimuli covered a wide range of high-level processes, including perceptual grouping, transparent motion, and depth perception. All stimuli were perceptually bistable such that percepts alternated every few seconds while the physical stimulation remained constant. The perceptual states were asymmetric, in that one reflected the default (nonsegmented) interpretation, and the other the non-default (segmented) interpretation. We confirmed behaviorally that upon stimulus presentation, the default percept was always perceived first, before perceptual alternations ensued. Imaging results showed that across all stimulus classes perceptual scene-segmentation was associated with an increase of activity in the posterior parietal cortex together with a decrease of neural signal in the early visual cortex. This pattern of activation is compatible with predictive coding models of visual perception, and suggests that parietal cortex hosts a generic mechanism for scene segmentation. Making sense of cluttered visual scenes is crucial for everyday perception. An important cue to scene segmentation is visual motion: slight movements of scene elements give away which elements belong to the foreground or background or to the same object. We used three distinct stimuli that engage visual scene segmentation mechanisms based on motion. They involved perceptual grouping, transparent motion, and depth perception. Brain activity associated with all three mechanisms converged in the same parietal region with concurrent deactivation of early visual areas. The results suggest that posterior parietal cortex is a hub involved in structuring visual scenes based on different motion cues, and that feedback modulates early cortical processing in accord with predictive coding theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.