Traditional finite element (FE) analysis is computationally demanding. The computational time becomes prohibitively long when multiple loading and boundary conditions need to be considered such as in musculoskeletal movement simulations involving multiple joints and muscles. Presented in this study is an innovative approach that takes advantage of the computational efficiency of both the dynamic multibody (MB) method and neural network (NN) analysis. A NN model that captures the behavior of musculoskeletal tissue subjected to known loading situations is built, trained, and validated based on both MB and FE simulation data. It is found that nonlinear, dynamic NNs yield better predictions over their linear, static counterparts. The developed NN model is then capable of predicting stress values at regions of interest within the musculoskeletal system in only a fraction of the time required by FE simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.