The aim of this paper is to investigate the effect of sintering temperature and time on the properties of Fe-Al 2 O 3 composite (5 wt% Al 2 O 3 ; 95 wt% Fe) prepared by powder metallurgy process. X-ray diffraction, microstructure, density, hardness and compressive strength of prepared samples have been investigated. XRD studies show the presence of Fe and Al 2 O 3 along with iron aluminate phase. Iron aluminate is formed as a result of reactive sintering between iron and alumina particles. Microstructural examination of the specimen showed a dense structure with nanosize dispersion of the reinforcement of ceramic phase. Density as well as hardness of specimens depend on the formation of iron aluminate phase, which in turn depends on sintering temperature and time.
The aim of the present study is to investigate the effect of Si and SiC addition on the microstructure, mechanical, and corrosion properties of Al matrix-based composites. Al–Si (2 wt% fixed) alloy reinforced SiC composites were prepared by stir-casting process using SiC reinforcement contents from 0 to 20 wt% at an interval of 5%. A uniform dispersion of SiC particles in the Al matrix was observed from the scanning electron microscopic analysis. Maximum hardness is found for composites having 15 wt% reinforcement content. Pin-on-disc wear test reveals that SiC particles increase the wear resistance of composites. Corrosion test reveals that composites reinforced with 20% reinforcement content shows the minimum i corr among all the compositions, attributing to the maximum corrosion resistance. Tribological and corrosion behaviour were found to be dependent on the reinforcement content. However, they were not interdependent on each other. It is expected that the present study would be helpful in the development of lightweight composites for aerospace and shipping industries applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.