We present a novel bilateral negotiation model that allows a self-interested agent to learn how to negotiate over multiple issues in the presence of user preference uncertainty. The model relies upon interpretable strategy templates representing the tactics the agent should employ during the negotiation and learns template parameters to maximize the average utility received over multiple negotiations, thus resulting in optimal bid acceptance and generation. Our model also uses deep reinforcement learning to evaluate threshold utility values, for those tactics that require them, thereby deriving optimal utilities for every environment state. To handle user preference uncertainty, the model relies on a stochastic search to find user model that best agrees with a given partial preference profile. Multi-objective optimization and multi-criteria decision-making methods are applied at negotiation time to generate Pareto-optimal outcomes thereby increasing the number of successful (win-win) negotiations. Rigorous experimental evaluations show that the agent employing our model outperforms the winning agents of the 10 th Automated Negotiating Agents Competition (ANAC' 19) in terms of individual as well as social-welfare utilities.
We present a novel negotiation model that allows an agent to learn how to negotiate during concurrent bilateral negotiations in unknown and dynamic e-markets. The agent uses an actor-critic architecture with model-free reinforcement learning to learn a strategy expressed as a deep neural network. We pre-train the strategy by supervision from synthetic market data, thereby decreasing the exploration time required for learning during negotiation. As a result, we can build automated agents for concurrent negotiations that can adapt to different e-market settings without the need to be pre-programmed. Our experimental evaluation shows that our deep reinforcement learning based agents outperform two existing well-known negotiation strategies in one-to-many concurrent bilateral negotiations for a range of e-market settings.
Workflow scheduling concerns the mapping of complex tasks to cloud resources by taking into account various Quality of Service requirements. In virtue of continuous proliferation in the exploration of cloud computing, it has become stringent to find the proper scheduling scheme for the execution of workflow under user specifications. Moreover, till date, there exists no systematic review of the existing numerous techniques for this NP-complete problem in the cloud. Taking this into account, the present study seeks to address this gap and spotlights the comprehensive taxonomy of various scheduling schemes as well as extensively compares them by illuminating their objectives, features, merits, and demerits. This paper also highlights the future research challenges with an aim to foster more research in the realm of workflow scheduling as an optimization task.
Please scroll down for article-it is on subsequent pages With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes. For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.