Many Gram‐negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Antigen85 (Ag85) proteins of Mycobacterium tuberculosis are mycolyl transferases that aid in cell wall biosynthesis. MPT51 (Ag85D) is closely related to Ag85 proteins. We have performed a comparative molecular dynamics (MD) simulation study of Ag85 proteins (Ag85A, Ag85B, and Ag85C) and MPT51. We observe that helix α5, β7-α9 loop, and N-terminal region of helix α9 of Ag85 proteins are mobile, suggestive of lid like movement over the active site. Further, in Ag85B, we observe the proposed scooting mode of the hydrophobic gating residue Phe232. Our simulations also show a similar scooting mode for Phe232 of Ag85A and Trp158 of Ag85C. We also found aromatic residue clusters at the ends of the hydrophobic channel of Ag85 proteins, which may have functional significance. Although MPT51 lacks the tunnel, it has the aromatic clusters. The aromatic cluster region has the ability to bind trehalose. From an immunoinformatics study, a promiscuous linear epitope was identified in MPT51 which could be useful in subunit vaccine studies. Recent studies have shown that a mycobacterial protein HupB, interacts with Ag85 proteins and has a regulatory role in cell wall biogenesis, with implications in growth rate and latency. We performed molecular docking studies of HupB protein with Ag85 proteins and predicted potential sites of interaction in Ag85 proteins. The insights gained through the current study can potentially pave way for newer therapeutic interventions. Graphical Abstract Dynamics of antigen85 proteins and MPT51 from Mycobacterium tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.