SUMMARY The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores.
To function in diverse cellular processes, the dynamic properties of microtubules must be tightly regulated. Cellular microtubules are influenced by a multitude of regulatory proteins, but how their activities are spatiotemporally coordinated within the cell, or on specific microtubules, remains mostly obscure. The conserved kinesin-8 motor proteins are important microtubule regulators, and family members from diverse species combine directed motility with the ability to modify microtubule dynamics. Yet how kinesin-8 activities are appropriately deployed in the cellular context is largely unknown. Here we reveal the importance of the nonmotor tail in differentially controlling the physiological functions of the budding yeast kinesin-8, Kip3. We demonstrate that the tailless Kip3 motor domain adequately governs microtubule dynamics at the bud tip to allow spindle positioning in early mitosis. Notably, discrete regions of the tail mediate specific functions of Kip3 on astral and spindle microtubules. The region proximal to the motor domain operates to spatially regulate astral microtubule stability, while the distal tail serves a previously unrecognized role to control the timing of mitotic spindle disassembly. These findings provide insights into how nonmotor tail domains differentially control kinesin functions in cells and the mechanisms that spatiotemporally control the stability of cellular microtubules.
Background: The Fat mass and obesity-associated gene (FTO) and its involvement in weight gain and obesity is well-known. However, no reports have been published on the Indian population regarding the relationship between single nucleotide polymorphisms (SNPs) in its intronic region and obesity. The aim of this pilot study was to evaluate the frequency and association of SNPs in intron-1 of the FTO gene in obese and overweight Indian adults. Methods: This study group consisted of 80 adults, aged 23.5 ± 8.9 yr, with a mean BMI of 28.8 ± 6.2 kg/m2. Genomic DNA was isolated, exons1-3 & intron1 of FTO were amplified using polymerase chain reaction and sequenced by ABI sequencing detection system. The reported SNPs rs1420185, rs8050136, rs1121980 and rs55872725 were checked for their presence or absence in this group of the adult Indian population. Results: No mutations were found in the exonic sequence of FTO, however, the association of rs1420185, rs8050136, rs1121980 and rs55872725 SNPs was identified in this population. The genotypic frequency at FTO rs8050136 was 32.2% for C>A, at rs55872725 it was 45.7% for C>T, at rs1420185 it was 27.1% for T>C and at rs1121980 it was 30.5% for G>A. All four SNPs in combination were observed in 6 participants (10.2%), all of whom were found to be either obese or overweight. Conclusion: These findings indicate that Indians with these SNPs are most likely to be at increased risk of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.