BackgroundIn this study, we evaluated the ability of radiomic textural analysis of intratumoral and peritumoral regions on pretreatment breast cancer dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC).MethodsA total of 117 patients who had received NAC were retrospectively analyzed. Within the intratumoral and peritumoral regions of T1-weighted contrast-enhanced MRI scans, a total of 99 radiomic textural features were computed at multiple phases. Feature selection was used to identify a set of top pCR-associated features from within a training set (n = 78), which were then used to train multiple machine learning classifiers to predict the likelihood of pCR for a given patient. Classifiers were then independently tested on 39 patients. Experiments were repeated separately among hormone receptor-positive and human epidermal growth factor receptor 2-negative (HR+, HER2−) and triple-negative or HER2+ (TN/HER2+) tumors via threefold cross-validation to determine whether receptor status-specific analysis could improve classification performance.ResultsAmong all patients, a combined intratumoral and peritumoral radiomic feature set yielded a maximum AUC of 0.78 ± 0.030 within the training set and 0.74 within the independent testing set using a diagonal linear discriminant analysis (DLDA) classifier. Receptor status-specific feature discovery and classification enabled improved prediction of pCR, yielding maximum AUCs of 0.83 ± 0.025 within the HR+, HER2− group using DLDA and 0.93 ± 0.018 within the TN/HER2+ group using a naive Bayes classifier. In HR+, HER2− breast cancers, non-pCR was characterized by elevated peritumoral heterogeneity during initial contrast enhancement. However, TN/HER2+ tumors were best characterized by a speckled enhancement pattern within the peritumoral region of nonresponders. Radiomic features were found to strongly predict pCR independent of choice of classifier, suggesting their robustness as response predictors.ConclusionsThrough a combined intratumoral and peritumoral radiomics approach, we could successfully predict pCR to NAC from pretreatment breast DCE-MRI, both with and without a priori knowledge of receptor status. Further, our findings suggest that the radiomic features most predictive of response vary across different receptor subtypes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-017-0846-1) contains supplementary material, which is available to authorized users.
Purpose: To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT. Materials and Methods: For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18–92 years; 125 men [mean age, 67 years; range, 18–90 years] and 165 women [mean age, 68 years; range, 33–92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule per patient. Corresponding nodule of interest was identified on CT axial images by a radiologist with manually annotation. Nodule shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were compared against a convolutional neural network (CNN) and diagnostic readings of two radiologists. Results: Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively. Conclusion: Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT. Summary Perinodular and intranodular radiomic features corresponding to texture and shape (radiomics) were evaluated to distinguish nonsmall cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT.
Objective Despite 90% Glioblastoma (GBM) recurrences occurring in the peritumoral brain zone (PBZ), its contribution in patient survival is poorly understood. The current study leverages computerized texture (i.e. radiomic) analysis to evaluate the efficacy of PBZ features from preoperative MRI in predicting long (>18-months) versus short-term (<7-months) survival in GBM. Methods 65 patient exams (29 short-term, 36 long-term) with Gadolinium-contrast T1w, FLAIR, T2w sequences from the Cancer Imaging Archive were employed. An expert manually segmented each study as: enhancing lesion, PBZ, and tumour necrosis. 402 radiomic features (capturing co-occurrence, gray-level dependence, directional gradients) was obtained for each region. Evaluation was performed using 3-fold cross validation, such that a subset of studies was used to select the most predictive features, and the remaining subset was used to evaluate their efficacy in predicting survival. Results A subset of 10 radiomic “peritumoral” MRI features, suggestive of intensity heterogeneity and textural patterns, was found to be predictive of survival (p = 1.47 × 10−5), as compared to features from enhancing tumour, necrotic regions, and known clinical factors. Conclusion Our preliminary analysis suggests that radiomic features from the PBZ on routine pre-operative MRI may be predictive of long-, versus short-term survival in GBM.
Even though 1 in 6 men in the US, in their lifetime are expected to be diagnosed with prostate cancer (CaP), only 1 in 37 is expected to die on account of it. Consequently, among many men diagnosed with CaP, there has been a recent trend to resort to active surveillance (wait and watch) if diagnosed with a lower Gleason score on biopsy, as opposed to seeking immediate treatment. Some researchers have recently identified imaging markers for low and high grade CaP on multi-parametric (MP) magnetic resonance (MR) imaging (such as T2 weighted MR imaging (T2w MRI) and MR spectroscopy (MRS)). In this paper, we present a novel computerized decision support system (DSS), called Semi Supervised Multi Kernel Graph Embedding (SeSMiK-GE), that quantitatively combines structural, and metabolic imaging data for distinguishing (a) benign versus cancerous, and (b) high- versus low-Gleason grade CaP regions from in vivo MP-MRI. A total of 29 1.5 Tesla endorectal pre-operative in vivo MP MRI (T2w MRI, MRS) studies from patients undergoing radical prostatectomy were considered in this study. Ground truth for evaluation of the SeSMiK-GE classifier was obtained via annotation of disease extent on the preoperative imaging by visually correlating the MRI to the ex vivo whole mount histologic specimens. The SeSMiK-GE framework comprises of three main modules: (1) multi-kernel learning, (2) semi-supervised learning, and (3) dimensionality reduction, which are leveraged for the construction of an integrated low dimensional representation of the different imaging and non-imaging MRI protocols. Hierarchical classifiers for diagnosis and Gleason grading of CaP are then constructed within this unified low dimensional representation. Step 1 of the hierarchical classifier employs a random forest classifier in conjunction with the SeSMiK-GE based data representation and a probabilistic pairwise Markov Random Field algorithm (which allows for imposition of local spatial constraints) to yield a voxel based classification of CaP presence. The CaP region of interest identified in Step 1 is then subsequently classified as either high or low Gleason grade CaP in Step 2. Comparing SeSMiK-GE with unimodal T2w MRI, MRS classifiers and a commonly used feature concatenation (COD) strategy, yielded areas (AUC) under the receiver operative curve (ROC) of (a) 0.89 ± 0.09 (SeSMiK), 0.54 ± 0.18 (T2w MRI), 0.61 ± 0.20 (MRS), and 0.64 ± 0.23 (COD) for distinguishing benign from CaP regions, and (b) 0.84 ± 0.07 (SeSMiK),0.54 ± 0.13 (MRI), 0.59 ± 0.19 (MRS), and 0.62 ± 0.18 (COD) for distinguishing high and low grade CaP using a leave one out cross-validation strategy, all evaluations being performed on a per voxel basis. Our results suggest that following further rigorous validation, SeSMiK-GE could be developed into a powerful diagnostic and prognostic tool for detection and grading of CaP in vivo and in helping to determine the appropriate treatment option. Identifying low grade disease in vivo might allow CaP patients to opt for active surveillance rather than...
In this paper, we introduce a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) for capturing subtle differences between benign and pathologic phenotypes which may be visually indistinguishable on routine anatomic imaging. CoLlAGe seeks to capture and exploit local anisotropic differences in voxel-level gradient orientations to distinguish similar appearing phenotypes. CoLlAGe involves assigning every image voxel an entropy value associated with the co-occurrence matrix of gradient orientations computed around every voxel. The hypothesis behind CoLlAGe is that benign and pathologic phenotypes even though they may appear similar on anatomic imaging, will differ in their local entropy patterns, in turn reflecting subtle local differences in tissue microarchitecture. We demonstrate CoLlAGe’s utility in three clinically challenging classification problems: distinguishing (1) radiation necrosis, a benign yet confounding effect of radiation treatment, from recurrent tumors on T1-w MRI in 42 brain tumor patients, (2) different molecular sub-types of breast cancer on DCE-MRI in 65 studies and (3) non-small cell lung cancer (adenocarcinomas) from benign fungal infection (granulomas) on 120 non-contrast CT studies. For each of these classification problems, CoLlAGE in conjunction with a random forest classifier outperformed state of the art radiomic descriptors (Haralick, Gabor, Histogram of Gradient Orientations).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.