Ordered mesoporous carbon (OMC) supported gold nanoparticles of size 3–4 nm having uniform dispersion were synthesized by sol‐immobilization method. OMCs such as CMK‐3 and NCCR‐56 with high surface area and uniform pore size were obtained, respectively, using ordered mesoporous silicas such as SBA‐15 and IITM‐56 as hard templates, respectively. The resulting OMC supported monodispersed nano‐gold, i. e., Au/CMK‐3 and Au/NCCR‐56, exhibited excellent performance as mild‐oxidizing catalysts for oxidation of glycerol with high hydrothermal stability. Further, unlike activated carbon supported nano‐gold catalysts (Au/AC), the OMC supported nano‐gold catalysts, i. e., Au/CMK‐3 and Au/NCCR‐56, show no aggregation of active species even after recycling. Thus, in the case of Au/CMK‐3 and Au/NCCR‐56, both the fresh and regenerated catalysts showed excellent performane for the chosen reaction owing to an enhanced textural integrity of the catalysts and that with remarkable selectivity towards glyceric acid. The significance of the OMC supports in maintaining the dispersion of gold nanoparticles is explicit from this study, and that the activity of Au/AC catalyst is considerably decreased (∼50 %) upon recycling as a result of agglomeration of the active gold nanoparticles over the disordered amorphous carbon matrix.
Pd-based catalysts are efficient for methane combustion but impractical at high temperatures due to sintering effect. Here in, we report a thermally stable Pd/SBA-15 catalyst that was prepared by using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.