Summary:Purpose: To demonstrate the anatomic localization of the cortical sources of the interictal EEG activity in human idiopathic generalized epilepsy (IGE).Methods: Multiple cortical and hippocampal sources of the interictal spontaneous EEG activity were investigated by lowresolution electromagnetic tomography in 15 untreated IGE patients and in 15 healthy controls. EEG activity (current density) in four frequency bands (delta: 1.5-3.5 Hz, theta: 3.5-7.5 Hz, alpha: 7.5-12.5 Hz, beta: 12.5-25.0 Hz) was computed for 2,397 voxels. Voxel-by-voxel group comparison was done between the patient and the control group. Voxels with p < 0.01 differences (between the two groups) were correlated with cortical anatomy.Results: Areas of significantly increased or decreased activity were characterized by their anatomical extension and the frequency bands involved. Five areas of bilaterally increased activity were found: rostral part of the prefrontal cortex (delta, theta); posterior part of the insula (delta); hippocampus and mediobasal temporal cortex (all frequency bands); medial parietooccipital cortex (theta, alpha, beta); dorsal and polar parts of the occipital cortex (alpha). Bilaterally decreased delta, theta, alpha activity was found in the majority of the frontal and anterior parietal cortex on the lateral surface, and in parts of the medial surface of the hemispheres. The area of decreased beta activity was less extensive. The right lateral and laterobasal temporal cortex showed decreased delta, theta, alpha, and beta activity, while its left counterpart only showed decreased delta and alpha activity in a limited part of this area.Conclusions: (1) Pathological interictal EEG activity is not evenly distributed across the cortex in IGE. The prefrontal area of increased activity corresponds to the area that is essential in the buildup of the ictal spike-wave paroxysms (absence seizures). The existence of the posterior "center of gravity" of increased EEG activity in IGE was confirmed. The frontal area of decreased activity might be related to the cognitive deficit described in IGE patients. (2) Increased activity in a lot of ontogenetically older areas (including the hippocampi) and decreased activity in the majority of the isocortex is a peculiar pattern that argues for a developmental hypothesis for IGE.
Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P < 0.01) group differences were projected to cortical anatomy. Spectral findings: there was a tendency for more alpha power in the migraine that in the control group in all but two (F4, C3) derivations. However, statistically significant (P < 0.01, Bonferroni-corrected) spectral difference was only found in the right occipital region. The main LORETA-finding was that voxels with P < 0.01 differences were crowded in anatomically contiguous cortical areas. Increased alpha activity was found in a cortical area including part of the precuneus, and the posterior part of the middle temporal gyrus in the right hemisphere. Decreased alpha activity was found bilaterally in medial parts of the frontal cortex including the anterior cingulate and the superior and medial frontal gyri. Neither spectral analysis, nor LORETA revealed statistically significant differences in the delta, theta, and beta bands. LORETA revealed the anatomical distribution of the cortical sources (generators) of the EEG abnormalities in migraine. The findings characterize the state of the cerebral cortex in the pain-free interval and might be suitable for planning forthcoming investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.