5-[N,N-Bis(2-chloroethyl)amino]-2,4-dinitrobenzamide (1; SN 23862) is a novel bioreductive drug whose selective toxicity for hypoxic cells appears due to oxygen-inhibited enzymatic reduction of one of the nitro groups to the corresponding amine or hydroxylamine. Radiolytic reduction of 1 using up to four reducing equivalents in 1 N sodium formate was shown to proceed via electron addition to the 4-nitro group, thereby identifying this substituent as the most electron-affinic site in the molecule. The initially-formed 4-hydroxylamine and its N-hydroxytetrahydroquinoxaline half-mustard cyclization product (formed by intramolecular reaction with one arm of the adjacent mustard group) are reduced to the corresponding 4-amines upon further addition of electrons, although reduction of the 2-nitro group leading to 2,4-diamino products begins after addition of only six electron equivalents. Radiolytic reduction of the structurally similar 5-(aziridin-1-yl)-2,4-dinitrobenzamide (2; CB 1954) with six electron equivalents also occurs at the 4-nitro group to give the 4-hydroxylamine and 4-amine. The product mixture from reduction of 2 is less complex, largely because the corresponding 4-hydroxylamine and 4-amine are stable. The major reduction products of 1 were chemically synthesized by unequivocal routes to provide authentic samples for identification of the products of radiolytic reduction and to allow determination of their cytotoxicities. The 2- and 4-amino derivatives of 1 are significantly more cytotoxic than the parent drug, although the toxicity of the 4-amine is moderated by its facile conversion to the corresponding less toxic tetrahydroquinoxaline half-mustard. Although the 2- and 4-hydroxylamino derivatives were prepared by chemical reduction of 1, their toxicity could not be evaluated because of their instability. The 4-hydroxylamine reacts intramolecularly with the 5-mustard group somewhat more rapidly than does the 4-amine, while the 2-hydroxylamine is converted into a 2,2'-azoxy dimer following aerial oxidation to the 2-nitroso derivative. The fully reduced 2,4-diamino derivative of 1 is 10-fold more cytotoxic again than the 2-amine and, surprisingly, does not undergo spontaneous intramolecular alkylation. This elucidation of the reduction chemistry of 1 will facilitate further investigations of the toxic products generated from this compound both by hypoxic tumor cells and by ADEPT enzymes.
Summary 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), synthesized in this laboratory and currently in phase I clinical trial, is a low molecular weight inducer of tumour necrosis factor-α (TNF-α). Administration of DMXAA to mice with established transplantable tumours elicits rapid vascular collapse selectively in the tumour, followed by extensive haemorrhagic necrosis mediated primarily through the production of TNF-α. In this report we have investigated the synthesis of TNF-α mRNA in hepatic, splenic and tumour tissue. Coadministration of thalidomide with DMXAA increased anti-tumour activity and increased intra-tumoural TNF-α production approximately tenfold over that obtained with DMXAA alone. Thalidomide increased splenic TNF-α production slightly but significantly decreased serum and hepatic levels of TNF-α induced with DMXAA. Lipopolysaccharide (LPS) induced 300-fold higher serum TNF-α than did DMXAA at the maximum tolerated dose, but induced similar amounts of TNF-α in spleen, liver and tumour. Splenic TNF-α activity induced with LPS was slightly increased with thalidomide, but serum and liver TNF-α levels were suppressed. Thalidomide did not increase intra-tumoural TNF-α production induced with LPS, in sharp contrast to that obtained with DMXAA. While thalidomide improved the anti-tumour response to DMXAA, it had no effect on the anti-tumour action of LPS that did not induce a significant growth delay or cures against the Colon 38 tumour. The increase in the anti-tumour action by thalidomide in combination with DMXAA corresponded to an increase in intra-tumoural TNF-α production. Co-administration of thalidomide may represent a novel approach to improving selective intra-tumoural TNF-α production and anti-tumour efficacy of DMXAA.Keywords: DMXAA; thalidomide; Colon 38; endotoxin; tumour necrosis factor 716British Journal of Cancer (1999) 80(5/6), 716-723 © 1999 Cancer Research Campaign Article no. bjoc.1998 Received 30 Silva et al, 1994), but was withdrawn from use as a sedative and anti-emetic in the 1960s because of its teratogenicity (Fabro et al, 1967). Recent studies indicate that its immunosuppressive and anti-inflammatory effects would be beneficial to the treatment of graft-versus-host disease (Vogelsang et al, 1992;Uthoff et al, 1995), rheumatoid arthritis (Gutierrez-Rodriguez et al, 1989), prevention of graft rejection (Vogelsang et al, 1988;Uthoff et al, 1995), HIV/AIDS (Makonkawkeyoon et al, 1993;Moreira et al, 1997), sarcoidosis (Carlesimo et al, 1995) and various other inflammatory diseases (Burroughs et al, 1995). In experiments to determine whether suppression of serum TNF-α production by thalidomide affected the antitumour response to DMXAA, we found that, while serum TNF-α levels decreased, anti-tumour activity was unexpectedly improved . Reduction of tumour blood flow induced by DMXAA, which is thought to be mediated by TNF-α, was not reversed by thalidomide . Thalidomide analogues that were more potent than thalidomide in inhibiting DMXAA-induced serum TNF-α were also more potent in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.