Introduction Since the first description of gain of function (GOF) mutations in signal transducer and activator of transcription (STAT) 1, more than 300 patients have been described with a broad clinical phenotype including infections and severe immune dysregulation. Whilst Jak inhibitors (JAKinibs) have demonstrated benefits in several reported cases, their indications, dosing, and monitoring remain to be established. Methods A retrospective, multicenter study recruiting pediatric patients with STAT1 GOF under JAKinib treatment was performed and, when applicable, compared with the available reports from the literature. Results Ten children (median age 8.5 years (3–18), receiving JAKinibs (ruxolitinib (n = 9) and baricitinib (n = 1)) with a median follow-up of 18 months (2–42) from 6 inborn errors of immunity (IEI) reference centers were included. Clinical profile and JAKinib indications in our series were similar to the previously published 14 pediatric patients. 9/10 (our cohort) and 14/14 patients (previous reports) showed partial or complete responses. The median immune deficiency and dysregulation activity scores were 15.99 (5.2–40) pre and 7.55 (3–14.1) under therapy (p = 0.0078). Infection, considered a likely adverse event of JAKinib therapy, was observed in 1/10 patients; JAKinibs were stopped in 3/10 children, due to hepatotoxicity, pre-HSCT, and absence of response. Conclusions Our study supports the potentially beneficial use of JAKinibs in patients with STAT1 GOF, in line with previously published data. However, consensus regarding their indications and timing, dosing, treatment duration, and monitoring, as well as defining biomarkers to monitor clinical and immunological responses, remains to be determined, in form of international prospective multicenter studies using established IEI registries.
Background: Inherited chronic mucocutaneous candidiasis (CMC) is often caused by inborn errors of immunity, impairing the response to, or the production of IL-17A and IL-17F. About half of the cases carry STAT1 gain-of-function (GOF) mutations. Only few patients have been reported with mutations of TRAF3IP2, a gene encoding the adaptor ACT1 essential for IL-17 receptor(R) signaling. We investigated a 10-year-old girl with CMC, carrying a heterozygous variant of STAT1 and compound heterozygous variants of TRAF3IP2. Methods: By flow cytometry, STAT1 levels and phosphorylation (CD14+) as well as IL-17A, IL-22, IFNγ, and IL-4 production (memory CD4 + T cells) were determined. ACT1 expression and binding to IL-17RA were assessed by Western blot and coimmunoprecipitation in HEK-293T cells transfected with plasmids encoding wild-type or mutant HA-tagged ACT1 and Flag-IL-17RA. We evaluated IL-17A responses by measuring luciferase induction under a NF-κB-driven reporter system in HEK-293T cells and Groα secretion in fibroblasts. Results: A STAT1 variant (c.1363G>A/p.V455I) was identified by next-generation sequencing and classified as likely non-pathogenic as functional testing revealed normal STAT1 expression and phosphorylation upon IFNγ. We also found compound heterozygous variants (c.1325A>G/p.D451G and c.1335delA/p.K454fs11*) of TRAF3IP2. By overexpression, despite normal protein expression, and impaired (K454fs11*) or normal (D451G) interaction with IL-17RA, both mutant alleles resulted in impaired NF-κB activation. Patient's fibroblasts displayed abolished GROα secretion upon IL-17A stimulation. Finally, ex vivo CD4 + T cells showed increased IL-17A, IL-22, and IL-4 and normal low IFNγ expression upon stimulation. Conclusion:We identify novel compound heterozygous variants of TRAFP3IP2 causing autosomal recessive ACT1 deficiency in a child with CMC and provide a review of the current literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.