This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Lysosomal hydrolases were once considered effectors of the waste disposal system of the cell, the endo-lysosomal system. However, they are now recognized as highly selective enzymes, which can modulate the function of several substrates, contributing to essential homeostatic and pathological cellular processes. There are more than 50 different lysosomal hydrolases that display optimal activity in the pH present in the acidic cellular compartment but can also be found in other cellular locations. They can work alone or in cooperation with other proteases building signaling pathways or amplification cascades. In the context of liver fibrosis lysosomal hydrolases, especially cysteine cathepsins have been described to participate in several fundamental cellular events contributing to the development, progression, perpetuation, and resolution of liver fibrosis. This paper comprehensively reviews the current knowledge on the contribution of lysosomal hydrolases to liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.