These results suggest that the induction of the disease in CIA is mediated by products of the COX-2 enzyme and LTB4 production, and that blockade of both pathways is required to prevent CIA.
A mixed phage library containing random peptides from four to eight residues in length flanked by cysteine residues was screened using a recombinant soluble, form of human ICAM-1, which included residues 1-453, (ICAM-1(1-453)). Phage bound to immobilized ICAM-1(1-453) were eluted by three methods: (1) soluble ICAM-1(1-453), (2) neutralizing murine monoclonal antibody, (anti-ICAM-1, M174F5B7), (3) acidic conditions. After three rounds of binding and elution, a single, unique ICAM-1 binding phage bearing the peptide EWCEYLGGYLRCYA was isolated; the identical phage was selected with each method of elution. Attempts to isolate phage from non-constrained (i.e., not containing cysteines) libraries did not yield a phage that bound to ICAM-1. Phage displaying EWCEYLGGYLRCYA bound to immobilized ICAM-1(1-453) and to ICAM-1(1-185), a recombinant ICAM-1, which contains only the two amino-terminal immunoglobulin domains residing within residues 1-185. This is the region of the ICAM-1 that is bound by LFA-1. The phage did not bind to proteins other than ICAM-1. The phage bound to two ICAM-1 mutants, which contained amino acid substitutions that dramatically decreased or eliminated the binding to LFA-1. Studies were also performed with the corresponding synthetic peptide. The linear form of the synthetic EWCEYLGGYLRCYA peptide was found to inhibit LFA-1 binding to immobilized ICAM-1(1-453) in a protein-protein binding assay. By contrast, the disulfide, cyclized, form of the peptide was inactive. The EWCEYL portion of the sequence is homologous to the EWPEYL sequence found within rhinovirus coat protein 14, a nonintegrin protein that binds to ICAM-1. Taken together, the results suggests that the EWCEYLGGYLRCYA sequence is capable to binding to immobilized ICAM-1. Phage display appears to represent a new approach for the identification of peptides that interfere with ICAM-1 binding to beta 2 integrins.
Seven random peptide libraries (two displaying linear peptides and five displaying cysteine-constrained peptides) were constructed as gene III fusion proteins of the bacteriophage fd-tet. These libraries were used to screen a blocking monoclonal antibody raised against B7-1 (CD80), a human cell surface antigen that binds two T cell receptors, CD28 and CTLA-4. After three rounds of screening against the immobilized antibody, 1000-fold enrichment was observed in libraries displaying both linear and cysteine-constrained peptides. DNA sequencing of the enriched phage revealed two distinct consensus sequences: HXG(A/Y)XH and DVCXXGGPGC. Phage expressing these consensus sequences bound to L307.4 but not to an isotype matched antibody, indicating that binding was antibody specific. Synthetic peptides corresponding to both motifs inhibited phage binding to L307.4, indicating that the gene III protein is not required for peptide binding. In addition, the cyclized forms of synthetic peptides containing the DVCXXGGPGC motif were capable of inhibiting L307.4 binding to soluble B7-1/Fc fusion. Moreover, phage expressing only the HXG(A/Y)XH consensus sequence were inhibited from binding to L307.4 by the presence of chelating agents. These results indicate that the framework within which the peptide is presented on the surface of the phage may allow the identification of unique peptide motifs with distinct binding characteristics. These peptide motifs could be used for the design of peptidomimetics with therapeutic applications if they inhibit the binding of B7-1 to its T cell receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.