A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global usable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.
Nitrogen is a key element controlling the species composition, diversity, dynamics, and functioning of many terrestrial, freshwater, and marine ecosystems. Many of the original plant species living in these ecosystems are adapted to, and function optimally in, soils and solutions with low levels of available nitrogen. The growth and dynamics of herbivore populations, and ultimately those of their predators, also are affected by N. Agriculture, combustion of fossil fuels, and other human activities have altered the global cycle of N substantially, generally increasing both the availability and the mobility of N over large regions of Earth. The mobility of N means that while most deliberate applications of N occur locally, their influence spreads regionally and even globally. Moreover, many of the mobile forms of N themselves have environmental consequences. Although most nitrogen inputs serve human needs such as agricultural production, their environmental consequences are serious and long term. Based on our review of available scientific evidence, we are certain that human alterations of the nitrogen cycle have: approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; increased concentrations of the potent greenhouse gas N2O globally, and increased concentrations of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth; caused losses of soil nutrients, such as calcium and potassium, that are essential for the long‐term maintenance of soil fertility; contributed substantially to the acidification of soils, streams, and lakes in several regions; and greatly increased the transfer of nitrogen through rivers to estuaries and coastal oceans. In addition, based on our review of available scientific evidence we are confident that human alterations of the nitrogen cycle have: increased the quantity of organic carbon stored within terrestrial ecosystems; accelerated losses of biological diversity, especially losses of plants adapted to efficient use of nitrogen, and losses of the animals and microorganisms that depend on them; and caused changes in the composition and functioning of estuarine and nearshore ecosystems, and contributed to long‐term declines in coastal marine fisheries.
Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human-environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled humanenvironment systems is presented. R esearch on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of ''sustainability science'' (2-4) builds toward an understanding of the human-environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5-8). The vulnerability of coupled human-environment systems is one of the central elements of this dialogue and sustainability research (6, 9-11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human-environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http:͞͞sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments. The Emergence of Vulnerability AnalysisApproaches to and Composition of Vulnerability. Vulnerability is the degree to which a system, subsystem, or system component is likely to experience harm due to exposure to a hazard, either a perturbation or stress͞stressor. i This definition and the concept it addresses are not new (13); they ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.