Global investment in biomedical research has grown significantly over the last decades, reaching approximately a quarter of a trillion US dollars in 2010. However, not all of this investment is distributed evenly by gender. It follows, arguably, that scarce research resources may not be optimally invested (by either not supporting the best science or by failing to investigate topics that benefit women and men equitably). Women across the world tend to be significantly underrepresented in research both as researchers and research participants, receive less research funding, and appear less frequently than men as authors on research publications. There is also some evidence that women are relatively disadvantaged as the beneficiaries of research, in terms of its health, societal and economic impacts. Historical gender biases may have created a path dependency that means that the research system and the impacts of research are biased towards male researchers and male beneficiaries, making it inherently difficult (though not impossible) to eliminate gender bias. In this commentary, we – a group of scholars and practitioners from Africa, America, Asia and Europe – argue that gender-sensitive research impact assessment could become a force for good in moving science policy and practice towards gender equity. Research impact assessment is the multidisciplinary field of scientific inquiry that examines the research process to maximise scientific, societal and economic returns on investment in research. It encompasses many theoretical and methodological approaches that can be used to investigate gender bias and recommend actions for change to maximise research impact. We offer a set of recommendations to research funders, research institutions and research evaluators who conduct impact assessment on how to include and strengthen analysis of gender equity in research impact assessment and issue a global call for action.
There is a need for acute and chronic stimulation of the brain within the MRI for studies of epilepsy, as well as deep brain stimulation for movement and behavioral disorders. This work describes the production and characteristics of carbon fiberbased electrodes for acute and chronic stimulation in the brain. Increasing MRI field strengths are making it increasingly difficult to introduce foreign objects without a susceptibility artifact. We describe the production of, and the characteristics of carbon fiber-based electrodes. These are biocompatible and can be implanted for chronic studies. We show the use of these electrodes at 9.4T for studying functional activation. Data are presented showing regional connectivity. Activation not only occurs near the electrode, but at sites distant and often contralateral to the electrode. In addition, there were sites showing strong negative activation to stimulation both with direct stimulation and during a kindling-associated seizure. Magn Reson Med 61:222-228, 2009.
The effect of electrical kindling, applied twice daily in primary auditory cortex on the neural response properties and tonotopic organization in the lightly ketamine anesthetized cat is presented. Kindling refers to a highly persistent modification of brain functioning in response to repeated application of initially sub-convulsant electrical stimulation, typically in the limbic system but here in auditory cortex, which results in the development of epileptiform activity. Kindling resulted in approximately two-thirds of the animals reaching a fully generalized state in 40 stimulation sessions. Multi-unit recordings were obtained from primary auditory cortex contralateral to the kindled site. Spontaneous activity of single units in fully kindled animals showed a decrease in the mean firing rate compared to sham controls, and a reduction in the rate of burst firing as well as in the mean interspike interval in a burst as compared with normal and sham controls. A 40% enhancement of spontaneous neural synchrony, as measured by spike cross-correlation, was found. Hearing sensitivity, measured by auditory brainstem response, was not affected by the kindling sessions. A profound alteration of the tonotopic map in AI was observed with a large extent becoming tuned to similar high characteristic frequencies. The percentage of double tuned neurons was significantly increased, nevertheless the frequency-tuning curve bandwidth was on average reduced. Thus, electrical kindling resulted in substantial alterations in unit firing characteristics and reorganization of cat auditory cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.