A bacterial strain, designated as TSB‐6, was isolated from the sediments of a Tantloi (India) hot spring at 65 °C. The strain showed 98% 16S rRNA gene sequence similarity with Anoxybacillus kualawohkensis strain KW12 and was found to grow optimally at 37 °C. However, growing cells, cell suspensions, and cell‐free extracts from 65 °C cultures showed higher Cr(VI) reduction activities when assayed at either 37 or 65 °C than those obtained from 37 °C cultures. On fractionation of extracts from cells grown at 65 °C, the chromate reductase activity assayed at 65 °C was found mostly in the soluble fraction. When log‐phase cells growing at 37 °C were shifted to 65 °C, the stressed cells produced larger quantities of reactive oxygen species. Consequently, growth of the cells was retarded, but specific Cr(VI) reduction activity increased. 2D gel electrophoresis followed by MALDI‐TOF MS/MS identified the proteins whose expression level changed as a result of heat stress. The upregulated set included proteins involved in cellular metabolism of sugar, nucleotide, amino acids, lipids and vitamins, oxidoreductase activity, and protein folding. The downregulated proteins are also involved in cellular metabolism, DNA binding, and environmental signal processing.
Alpine ecosystems in the Himalaya, despite low primary productivity, store considerable amount of organic carbon. However, these ecosystems are highly vulnerable to climate warming which may stimulate ecosystem carbon efflux leading to carbon-loss and positive feedback. We used open-top chambers to understand warming responses of ecosystem respiration (ER) and soil respiration (SR) in two types of alpine meadows viz., herbaceous meadow (HM) and sedge meadow (SM), in the Western Himalaya. Experimental warming increased ER by 33% and 28% at HM and SM, respectively. No significant effect on SR was observed under warming, suggesting that the increase in ER was primarily due to an increase in above-ground respiration. This was supported by the warming-induced increase in above-ground biomass and decrease in SR/ER ratio. Soil temperature was the dominant controlling factor of respiration rates and temperature sensitivity of both ER and SR increased under warming, indicating an increase in contribution from plant respiration. The findings of the study suggest that climate warming by 1.5–2 °C would promote ER via increase in above-ground respiration during the growing season. Moreover, net C uptake in the alpine meadows may increase due to enhanced plant growth and relatively resistant SR under warming.
Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C. BSB-33 is the first Cr(VI) reducing T. thermohydrosulfuricus genome sequenced and of particular interest for bioremediation of environmental chromium contaminations. Here we discuss features of T. thermohydrosulfuricus BSB-33 and the unique genetic elements that may account for the peculiar metal reducing properties of this organism. The T. thermohydrosulfuricus BSB-33 genome comprises 2597606 bp encoding 2581 protein genes, 12 rRNA, 193 pseudogenes and has a G + C content of 34.20 %. Putative chromate reductases were identified by comparative analyses with other Thermoanaerobacter and chromate-reducing bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.