ObjectiveTo determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain–Barré Syndrome (GBS)‐like manifestations and include symptoms of the central nervous system (CNS).MethodsIn this first case–control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age‐ and sex‐matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel‐based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain.ResultsGray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes.InterpretationWe provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor‐related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS‐independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV‐related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.
Objective To determine the volume changes in gray and white matter during a long-term follow-up in patients suffering from pantothenate kinase-associated neurodegeneration (PKAN). Methods Magnetic resonance imaging was repeated in 13 patients and 14 age-matched controls after a mean interval of more than 7 years. T1-weighted sequences were evaluated by fully automated atlas-based volumetry, compared between groups and correlated with disease progression. Results The patients did not show generalized cerebral atrophy but did show a significantly faster volume reduction in the globus pallidus during follow-up (between -0.96% and -1.02% per year, p < 0.05 adjusted for false discovery rate) than controls, which was significantly related to the progression in their dystonia scores ( p = 0.032). Conclusion The volume loss in the globus pallidus over time—together with the accumulation of iron known as the “tiger’s eye”—supports the pathophysiologic concept of this nucleus as a center of inhibition and its severe malfunction in PKAN.
Purpose To demonstrate deviations of functional connectivity within the motor system in dystonic patients suffering from Pantothenate Kinase Associated Neurodegeneration, a genetic and metabolic disease, which is characterized by a primary lesion in the globus pallidus. Material and methods Functional Magnetic Resonance Imaging data were measured during resting state in 12 patients suffering from a confirmed mutation of the PANK2 gene. In this region-of-interest based analysis, data were evaluated in respect to correlation of signal time course between basal ganglia, motor-related cortical regions and cerebellum, were related to clinical data and were compared to a control group of 20 healthy volunteers. Results During resting state, correlation coefficients within the motor system were significantly lower in patients than in controls (0.025 vs. 0.133, p < 0.05). Network analysis by Network Based Statistics showed that these differences mainly affected the connectivity between a sub-network consisting of the basal ganglia and another one, the motor system-related cortical areas ( p < 0.05). 6 out of 12 connections, which correlated significantly to duration of disease, were connections between both sub-networks. Conclusion The finding of a reduced functional connectivity within the motor network, between the basal ganglia and cortical motor-related areas, fits well into the concept of a general functional disturbance of the motor system in PKAN.
Background and purpose The aim of this study was to look for deviations of cerebral perfusion in patients suffering from pantothenate kinase-associated neurodegeneration, where the globus pallidus is affected by severe accumulation of iron. Material and methods Under resting conditions, cerebral blood flow was measured by the magnetic resonance imaging technique of arterial spin labelling in cortical areas and basal ganglia in eight pantothenate kinase-associated neurodegeneration patients and 14 healthy age-matched control subjects and correlated to T2* time of these areas and – in patients – to clinical parameters. Results Despite highly significant differences of T2* time of the globus pallidus (20 vs 39 ms, p < 0.001), perfusion values of this nucleus were nearly identical in both groups (32 ± 3.3 vs 31 ± 4.0 ml/min/100 g) as well as in total brain gray matter (both 62 ± 6.7 resp. ±10.3 ml/min/100 g), putamen (41 ± 5.4 vs 40 ± 6.1 ml/min/100 g), in selected cortical regions, and the cerebellum. Correlations between perfusion and T2* time to clinical data did not reach significance ( p > 0.05). Conclusion The absence of any obvious deviations of perfusion in the group of patients during a resting condition does not support the view that (non-functional) vascular pathology is a major pathogenic factor in pantothenate kinase-associated neurodegeneration in the younger age group. The findings underline the value of the arterial spin technique to measure cerebral blood flow in areas of disturbed susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.