In our work we consider the following problem in the context of teleportation: an unknown pure state has to be teleported and there are two laboratories which can perform the task. One laboratory uses a pure non-maximally entangled channel but has a capability of performing the joint measurement on bases with a constrained degree of entanglement; the other lab makes use of a mixed X-state channel but can perform a joint measurement on bases with higher entanglement degrees. We compare the average teleportation fidelity achieved in both cases, finding that the fidelity achieved with the X-state can surpass the obtained with a pure channel, even though the X-state is less entangled than the latter. We find the conditions under which this effect occurs. Our results evidence that the entanglement of the joint measurement plays a role as important as the entanglement of the channel in order to optimize the teleportation process. We include an example showing that the average fidelity of teleportation obtained with a Werner state channel can be greater than that obtained with a Bell state channel.
In our work we consider the following problem in the context of teleportation: an unknown pure state have to be teleported and there are two laboratories which can perform the task. One laboratory uses a pure non maximally entangled channel but has a capability of performing the joint measurement on bases with a constrained degree of entanglement; the other lab makes use of a mixed X-state channel but can perform a joint measurement on bases with higher entanglement degrees. We compare the average teleportation fidelity achieved in both cases, finding that the fidelity achieved with the X-state can surpass the obtained with a pure channel, even though the X-state is less entangled than the latter. We find the conditions under which this effect occurs. Our results evidence that the entanglement of the joint measurement plays a role as important as the entanglement of the channel in order to optimize the teleportation process. We include an example showing that the average fidelity of teleportation obtained with a Werner state channel can be grater than that obtained with a Bell state channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.