Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.
Purpose of review The present review aims to address the feasibility of opioid free anesthesia (OFA). The use of opioids to provide adequate perioperative pain management has been a central practice of anesthesia, and only recently has been challenged. Understanding the goals and challenges of OFA is essential as the approach to intraoperative analgesia and postsurgical management of pain has shifted in response to the opioid epidemic in the United States. Recent findings OFA is an opioid sparing technique, which focuses on multimodal or balanced analgesia, relying on nonopioid adjuncts and regional anesthesia. Enhanced recovery after surgery protocols, often under the auspices of a perioperative pain service, can help guide and promote opioid reduced and OFA, without negatively impacting perioperative pain management or recovery. Summary The feasibility of OFA is evident. However, there are limitations of this approach that warrant discussion including the potential for adverse drug interactions with multimodal analgesics, the need for providers trained in regional anesthesia, and the management of pain expectations. Additionally, minimizing opioid use perioperatively also requires a change in current prescribing practices. Monitors that can reliably quantify nociception would be helpful in the titration of these analgesics and enable anesthesiologists to achieve the goal in providing personalized perioperative medicine.
Harmful blooms formed by species of the dinoflagellate Cochlodinium have caused massive fish kills and substantial economic losses in the Pacific Ocean. Recently, prominent blooms of Cochlodinium have occurred in central and southern California (2004-2008), and Cochlodinium cells are now routinely observed in microscopical analysis of algal assemblages from Californian coastal waters. The first documented economic loss due to a Cochlodinium bloom in California occurred in Monterey Bay and resulted in the mortality of commercially farmed abalone. Increasing occurrences of Cochlodinium blooms, the fact that these cells preserve poorly using standard techniques, and the difficulty of identifying preserved specimens using morphological criteria make Cochlodinium species prime candidates for the development of a quantitative real-time polymerase chain reaction (qPCR) approach. The 18S rDNA gene sequenced from Cochlodinium cells obtained from California coastal waters, as well as GenBank sequences of Cochlodinium, were used to design and test a Molecular Beacon(®) approach. The qPCR method developed in this study is species specific, sensitive for the detection of C. fulvescens that has given rise to the recent blooms in the eastern Pacific Ocean, and spans a dynamic abundance range of seven orders of magnitude. Initial application of the method to archived field samples collected during blooms in Monterey Bay revealed no statistically significant correlations between gene copy number and environmental parameters. However, the onset of Cochlodinium blooms in central California was consistent with previously reported findings of correlations to decreased surface temperature and increased inputs of nitrogenous nutrients.
RationalePulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated.Methods/ResultsPH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01).ConclusionWe report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.